Please work on these problems and be prepared to share your solutions with classmates in class next Monday. Assignments will not be collected for grading.

Readings

Read sections 1.8 of *Schaum’s Outline of Discrete Mathematics*.
Read section 2.1 of *Discrete Mathematics Elementary and Beyond*.

Problems

1. Prove using mathematical induction that the sum of the first \(n \) natural numbers is equal to \(\frac{n(n+1)}{2} \). This can also be stated as:

 Prove that the proposition \(P(n) \),

 \[\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \]

 is true for all \(n \in \mathbb{N} \)

2. Prove using mathematical induction that the proposition \(P(n) \),

 \[\sum_{i=1}^{n} \frac{1}{2^i} = 1 - \frac{1}{2^n} \]

 is true for all \(n \in \mathbb{N} \)

3. Prove using mathematical induction that the proposition \(P(n) \)

 \[n! \leq n^n \]

 is true for all \(n \in \mathbb{N} \).

4. Let \(S \) be a set of \(n \) elements, such that \(a \in S \). Show that there are the same number of subsets of \(S \) that do contain \(a \) as there are subsets of \(S \) that do not contain \(a \).