CISC-102 FALL 2015

HOMEWORK 3

Please work on these problems and be prepared to share your solutions with classmates in class next Monday. Assignments will **<u>not</u>** be collected for grading.

READINGS

Read sections 1.8 of Schaum's Outline of Discrete Mathematics. Read section 2.1 of Discrete Mathematics Elementary and Beyond.

Problems

(1) Prove using mathematical induction that the sum of the first *n* natural numbers is equal to $\frac{n(n+1)}{2}$. This can also be stated as:

Prove that the proposition P(n),

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

is true for all $n \in \mathbb{N}$

(2) Prove using mathematical induction that the proposition P(n),

$$\sum_{i=1}^{n} \frac{1}{2^i} = 1 - \frac{1}{2^n}$$

is true for all $n \in \mathbb{N}$

(3) Prove using mathematical induction that the proposition P(n)

$$n! \leq n^n$$

is true for all $n \in \mathbb{N}$.

(4) Let S be a set of n elements, such that $a \in S$. Show that there are the same number of subsets of S that do contain a as there are subsets of S that do not contain a.