CISC-102 Fall 2016

Homework 10 Solutions

 Pascal's triangle is symmetric about its central column. That is for an odd number of entries in a row (as in row 8) the same numbers are found when moving backward and forward from the central value 70. A row with an even number of entries such as row 5: 1 5 10 10 5 1, exhibits a similar pattern without a unique central value. Explain why Pascal's triangle exhibits this symmetry, using one of the binomial coefficient identities that we saw this week in class.

The identity to use is

$$\binom{n}{k} = \binom{n}{n-k}$$

When n is odd we have

$$\binom{n}{0} = \binom{n}{n}, \binom{n}{1} = \binom{n}{n-1}, \cdots, \binom{n}{\lfloor \frac{n}{2} \rfloor} = \binom{n}{\lceil \frac{n}{2} \rceil}$$

And when n is even we have

$$\binom{n}{0} = \binom{n}{n}, \binom{n}{1} = \binom{n}{n-1}, \cdots, \binom{n}{\frac{n}{2}-1} = \binom{n}{\frac{n}{2}+1}$$

2. Use a truth table to verify that the proposition $p \vee \neg (p \wedge q)$ is a tautology, that is, the expression is true for all values of p and q.

p	q	$p \wedge q$	$\neg (p \land q)$	$p \lor \neg (p \land q)$
T	T	T	F	T
T	F	F	Т	Т
F	T	F	T	T
F	F	F	Т	T

3. Use a truth table to verify that the proposition $(p \land q) \land \neg (p \lor q)$ is a contradiction, that is, the expression is false for all values of p and q.

p	q	$p \wedge q$	$p \lor q$	$\neg (p \lor q)$	$(p \land q) \land \neg (p \lor q)$
T	T	T	T	F	F
T	F	F	Т	F	F
F	T	F	Т	F	F
F	F	F	F	Т	F

4. Use a truth table to show that $p \lor q \equiv \neg(\neg p \land \neg q)$.

p	q	$\neg p$	$\neg q$	$p \vee q$	$\neg p \wedge \neg q$	$\neg(\neg p \land \neg q)$
Τ	Т	F	F	T	F	T
T	F	F	Т	Т	F	T
F	T	T	F	Т	F	Т
F	F	T	T	F	Т	F

5. Show that the following argument is valid.

$$p \to q, \neg q \vdash \neg p$$

We need to show that $p \to q \land \neg q \to \neg p$ is a tautology, and we do so using a truth table as follows:

$\neg p$	p	q	$\neg q$	$p \rightarrow q$	$p \to q \land \neg q$	$p \to q \land \neg q \to \neg p$
F	Т	F	Т	F	F	Т
F	Т	Т	F	Т	F	Т
Т	F	Т	F	Т	F	Т
Т	F	F	Т	Т	Т	Т

6. Let $A = \{1, 2, 3, 4, 5\}$. Determine the truth value of each of the following statements.

- (a) $(\exists x \in A)(x + 2 = 7)$ This is true with x = 5.
- (b) $(\forall x \in A)(x + 2 < 8)$ This is true, because

 $(1+2<8) \land (2+2<8) \land (3+3<8(\land(4+2<8)\land(5+2<8)).$

(c) $(\exists x \in A)(x+3 < 2)$

This is false because:

$$(1+3 \not< 2) \land (2+3 \not< 2) \land (3+3 \not< 2) \land (4+3 \not< 2) \land (5+3 \not< 2).$$

(d) $(\forall x \in A)(x + 3 \le 9)$ This is true, because

 $(1+3 \le 9) \land (2+3 \le 9) \land (3+3 \le 9) \land (4+3 \le 9) \land (5+3 \le 9).$

- 7. Let $A = \{1,2,3,4,5\}$. And let $(x, y) \in A^2$, be the domain of the propositions given below. Determine the truth value of the following statements.
 - (a) $\exists x \forall y, x^2 < y + 1$ The statement is true because $1^2 < y + 1$ for every $y \in A$.
 - (b) $\forall x \exists y, x^2 < y + 1$ The statement is false because there is no $y \in A$ such that $5^2 < y + 1$.