CISC-102 Fall 2016

Homework 2

September 26, 2016

Problems

1. Illustrate DeMorgan's Law $(A \cap B)^c = A^c \cup B^c$ using Venn diagrams.

Figure 1: $(A \cap B)$ is shown in (a), and (c) and (d) illustrate B^c and A^c respectively. Finally (b) shows that $(A \cap B)^c = A^c \cup B^c$

- 2. Write the dual of each of the following set equations.
 - (a) $A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$
 - (b) $(A \cup \mathbb{U}) \cap (A \cap \emptyset) = \emptyset$ $(A \cap \emptyset) \cup (A \cup \mathbb{U}) = \mathbb{U}$
 - (c) $A^c \cup B^c \cup C^c = (A \cap B \cap C)^c$ $A^c \cap B^c \cap C^c = (A \cup B \cup C)^c$
- 3. Let $A_i = \{1, 2, 3, \dots, i\}$ for all $i \in \mathbb{N}$. For example $A_4 = \{1, 2, 3, 4\}$. What are the elements of the set:

(a) What are the elements of the set $\bigcup_{i=1}^{n} A_i$?

$$\bigcup_{i=1}^{n} A_i = \{1, 2, \dots, n\}$$

(b) What are the elements of the set $\bigcap_{i=1}^{n} A_i$?

Figure 2: $A \subseteq B$ is shown on the left, and $A \subseteq B \subseteq C$ is shown on the right.

- 4. Observe that $A \subseteq B$ has the same meaning as $A \cap B = A$. Draw a Venn diagram to illustrate this fact.
 - See Figure 2. If $A \subseteq B$ then every element $x \in A$ is also and element in B, which in turn implies that $A \cap B = A$.
- 5. Use a Venn diagram to show that if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
 - See Figure 2. $A \subseteq B$ implies that every element of A is also in B, $x \in A$ implies $x \in B$. Similarly $B \subseteq C$ implies that implies that every element of B is also in C, $y \in B$ implies $y \in C$. Thus $A \subseteq C$.
- 6. Use the Principle of Exclusion and Inclusion to show that $|A \cup B| + |A \cap B| = |A| + |B|$. (It may help your understanding if you first explore an example such as $A = \{1,2,3\}$ and $B = \{3,4\}$).
 - By the Principle of Inclusion Exclusion we have $|A| + |B| |A \cap B| = |A \cup B|$. These quantities are just non-negative integers so if we add $|A \cap B|$ to the right and left side of the equation, we get the desired result.
- 7. What are the cardinalities of the following sets?
 - (a) $A = \{\text{winter, spring, summer, fall}\}.$ |A| = 4.
 - (b) $B = \{x : x \in \mathbb{Z}, 0 < x < 7\}. |B| = 6.$

- (c) P(B), that is, the power set of B. $|P(B)| = 2^6 = 64$.
- (d) $C = \{ x : x \in \mathbb{N}, x \text{ is even } \}$ This set has infinitely many elements.
- 8. Suppose that we have a sample of 100 students at Queen's who take at least one of the following language courses, French-101, Spanish-101, German-101. Also suppose that 65 take French-101, 45 take German-101, 42 take Spanish 101, 20 take French-101 and German-101, 25 take French-101 and Spanish-101, and 15 take German-101 and Spanish-101.
 - (a) How many students take all three language courses? Let F, S, and G denote the sets of students taking French Spanish and German respectively. The Principle of Inclusion and Exclusion tells us that $|F \cup S \cup G| = |F| + |S| + |G| |F \cap S| |S \cap G| |F \cap G| + |F \cap S \cap G|$ The problem statement gives us values for each quantity in the equation except for $|F \cap S \cap G|$. We can now simply fill in the numbers and solve for $|F \cap S \cap G|$, as follows:

$$100 = 65 + 42 + 45 - 25 - 15 - 20 + |F \cap S \cap G|$$

So we conclude that $|F \cap S \cap G| = 8$

- (b) Draw a Venn diagram representing these 100 students and fill in the regions with the correct number.
- (c) How many students take exactly 1 of these courses? Using the Venn diagram we can deduce that 28+10+18=56 students take exactly one of the language courses.
- (d) How many students take exactly 2 of these courses? Using the Venn diagram we can deduce that 17 + 12 + 7 = 36 students take exactly two courses.
- 9. Let S={a,b,c,d,e,f,g}. Determine which of the following are partitions of S:
 - (a) $P1 = [\{a,c,e\},\{b\},\{d,g\}]$ No, because f is missing from the union of the sets.
 - (b) $P2 = [\{a,b,e,g\},\{c\},\{d,f\}]$ Yes. The union of the sets is S, and the pairwise intersections of the sets are empty.
 - (c) P3 =[{a,e,g},{c,d},{b,e,f}] No, because the intersection of $\{a,e,g\} \cap \{b,e,f\}$ is not empty.
 - (d) P4= [{a,b,c,d,e,f,g}] Yes, this is technically a partition, but a very uninteresting one.

Figure 3: Language Courses Venn Diagram

10. Recall that the union operation is associative, that is $A \cup (B \cup C) = (A \cup B) \cup C$. Show that the relative complement set operation is not associative, that is, $A \setminus (B \setminus C) = (A \setminus B) \setminus C$, is incorrect for some sets A, B, C. (Note if relative complement is associative then the equation must be true for all sets A, B, C.)

Let A = {1,2,3} B = {1,2} and C = {2,3}.
$$A \setminus (B \setminus C) = \{2,3\}$$
 and $(A \setminus B) \setminus C = \emptyset$