Problems

1. Illustrate DeMorgan’s Law \((A \cap B)^c = A^c \cup B^c\) using Venn diagrams.

Figure 1: \((A \cap B)\) is shown in (a), and (c) and (d) illustrate \(B^c\) and \(A^c\) respectively. Finally (b) shows that \((A \cap B)^c = A^c \cup B^c\)

2. Write the dual of each of the following set equations.

 (a) \(A \cup (A \cap B) = A\)
 \(A \cap (A \cup B) = A\)
 (b) \((A \cup U) \cap (A \cap \emptyset) = \emptyset\)
 \((A \cap \emptyset) \cup (A \cup U) = U\)
 (c) \(A^c \cup B^c \cup C^c = (A \cap B \cap C)^c\)
 \(A^c \cap B^c \cap C^c = (A \cup B \cup C)^c\)

3. Let \(A_i = \{1, 2, 3, \ldots, i\}\) for all \(i \in \mathbb{N}\). For example \(A_4 = \{1, 2, 3, 4\}\).
 What are the elements of the set:
(a) What are the elements of the set $\bigcup_{i=1}^{n} A_i$?

$$\bigcup_{i=1}^{n} A_i = \{1, 2, \ldots, n\}$$

(b) What are the elements of the set $\bigcap_{i=1}^{n} A_i$?

$$\bigcap_{i=1}^{n} A_i = \{1\}$$

Figure 2: $A \subseteq B$ is shown on the left, and $A \subseteq B \subseteq C$ is shown on the right.

4. Observe that $A \subseteq B$ has the same meaning as $A \cap B = A$. Draw a Venn diagram to illustrate this fact.

See Figure 2. If $A \subseteq B$ then every element $x \in A$ is also an element in B, which in turn implies that $A \cap B = A$.

5. Use a Venn diagram to show that if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

See Figure 2. $A \subseteq B$ implies that every element of A is also in B, $x \in A$ implies $x \in B$. Similarly $B \subseteq C$ implies that implies that every element of B is also in C, $y \in B$ implies $y \in C$. Thus $A \subseteq C$.

6. Use the Principle of Exclusion and Inclusion to show that $|A \cup B| + |A \cap B| = |A| + |B|$.

(It may help your understanding if you first explore an example such as $A = \{1,2,3\}$ and $B = \{3,4\}$).

By the Principle of Inclusion Exclusion we have $|A| + |B| - |A \cap B| = |A \cup B|$. These quantities are just non-negative integers so if we add $|A \cap B|$ to the right and left side of the equation, we get the desired result.

7. What are the cardinalities of the following sets?

 (a) $A = \{\text{winter, spring, summer, fall}\}$. $|A| = 4$.

 (b) $B = \{x : x \in \mathbb{Z}, 0 < x < 7\}$. $|B| = 6$.

2
(c) \(P(B) \), that is, the power set of \(B \). \(|P(B)| = 2^6 = 64 \).

(d) \(C = \{ \ x : x \in \mathbb{N}, x \text{ is even} \} \) This set has infinitely many elements.

8. Suppose that we have a sample of 100 students at Queen’s who take at least one of the following language courses, French-101, Spanish-101, German-101. Also suppose that 65 take French-101, 45 take German-101, 42 take Spanish 101, 20 take French-101 and German-101, 25 take French-101 and Spanish-101, and 15 take German-101 and Spanish-101.

(a) How many students take all three language courses?

Let \(F, S, \) and \(G \) denote the sets of students taking French Spanish and German respectively. The Principle of Inclusion and Exclusion tells us that

\[
|F \cup S \cup G| = |F| + |S| + |G| - |F \cap S| - |S \cap G| - |F \cap G| + |F \cap S \cap G|
\]

The problem statement gives us values for each quantity in the equation except for \(|F \cap S \cap G|\). We can now simply fill in the numbers and solve for \(|F \cap S \cap G|\), as follows:

\[
100 = 65 + 42 + 45 - 25 - 15 - 20 + |F \cap S \cap G|\]

So we conclude that \(|F \cap S \cap G| = 8\).

(b) Draw a Venn diagram representing these 100 students and fill in the regions with the correct number.

(c) How many students take exactly 1 of these courses? Using the Venn diagram we can deduce that \(28+10+18 = 56\) students take exactly one of the language courses.

(d) How many students take exactly 2 of these courses? Using the Venn diagram we can deduce that \(17 +12 +7 = 36\) students take exactly two courses.

9. Let \(S=\{a,b,c,d,e,f,g\} \). Determine which of the following are partitions of \(S \):

(a) \(P_1 = \{\{a,c,e\},\{b\},\{d,g\}\} \) No, because \(f \) is missing from the union of the sets.

(b) \(P_2 = \{\{a,b,e,g\},\{c\},\{d,f\}\} \) Yes. The union of the sets is \(S \), and the pairwise intersections of the sets are empty.

(c) \(P_3 = \{\{a,e,g\},\{c,d\},\{b,e,f\}\} \) No, because the intersection of \(\{a, e, g\} \cap \{b, e, f\} \) is not empty.

(d) \(P_4= \{\{a,b,c,d,e,f,g\}\} \) Yes, this is technically a partition, but a very uninteresting one.
10. Recall that the union operation is associative, that is \(A \cup (B \cup C) = (A \cup B) \cup C \). Show that the relative complement set operation is not associative, that is, \(A \setminus (B \setminus C) \neq (A \setminus B) \setminus C \), is incorrect for some sets A, B, C. (Note if relative complement is associative then the equation must be true for all sets A, B, C.)

Let \(A = \{1,2,3\} \), \(B = \{1,2\} \) and \(C = \{2,3\} \). \(A \setminus (B \setminus C) = \{2,3\} \) and \((A \setminus B) \setminus C = \emptyset \).