CISC-102 FALL 2016

HOMEWORK 4 SOLUTIONS

- (1) Determine whether the mappings given below where $f: \mathbb{R} \to \mathbb{R}$ are or are not functions, and explain your decision.
 - (a) f(x) = 1/x

f(x) = 1/x is not a function from \mathbb{R} to \mathbb{R} because 1/x is not defined for x = 0.

f(x) = 1/x is a functions from $\mathbb{R} \setminus \{0\}$ to \mathbb{R} .

(b) $f(x) = \sqrt{x}$

 $f(x) = \sqrt{x}$ is not a function from \mathbb{R} to \mathbb{R} because \sqrt{x} is not a real number for x < 0. Furthermore, \sqrt{x} has a positive and negative value for $x \in \mathbb{R}, x > 0$. We could salvage this by defining the set $\mathbb{R}^+ = \{x : x \in \mathbb{R}, x \geq 0\}$, and consider a function from \mathbb{R}^+ to \mathbb{R}^+ defined as $f(x) = +\sqrt{x}$.

(c) f(x) = 3x - 3

Multiplication by a constant and subtraction of a constant is closed under the reals. Therefore, f(x) = 3x - 3 is a function because 3x - 3 has a distinct image $x \in \mathbb{R}$.

- (2) Determine whether each of the following functions from \mathbb{R} to \mathbb{R} is a bijection, and explain your decision. HINT: Plotting these functions may help you with your decision.
 - (a) f(x) = 3x + 4

f(x) = 3x + 4 is an onto function. Consider the equation y = 3x + 4. For every real valued y we can find a real valued x, that is x = y/3 - 4. f(x) = 3x + 4 is a one-to-one function because, if $3x_1 + 4 = 3x_2 + 4$ then $x_1 = x_2$. Therefore we can conclude that f(x) = 3x + 4 is a bijection. Furthermore we have $f^{-1}(x) = x/3 - 4$

(b) $f(x) = -x^2 + 2$

 $f(x) = -x^2 + 2$ is not a bijection. It is neither onto $(f(x) \le 2)$ nor one-to-one $(f(x) = 0 \text{ for } x = +\sqrt{2} \text{ and for } x = -\sqrt{2}).$

(c) $f(x) = x^3 - x^2$

 $f(x) = x^3 - x^2$ is not a bijection. It is not one-to-one because $x^3 - x^2 = x^2(x-1)$ and is equal to 0 for x = 1, and x = 0.

1

- (3) Consider the recursive function T(1) = 1, T(n) = T(n-1) + 1, for all $n \ge 2$.
 - (a) Use the recursive definition to obtain values T(2), T(3), and T(4). T(2) = 2, T(3) = 3, T(4) = 4.
 - (b) Using the values that you obtained for T(2), T(3), and T(4), to guess the value of T(n), and then prove that it is correct using induction.

We guess that T(n) = n, and prove this using mathematical induction.

Let P(n) denote the proposition that the recursive function T(n) as defined above has the closed form solution T(n) = n.

P(n) is true for all $n \in \mathbb{N}$.

Proof: We use mathematical induction.

Base: T(1) = 1 by definition.

Induction Hypothesis: Assume that P(k) is true for some $k, k \ge 1$, that is, T(k) = k.

Induction Step: P(k+1) is the proposition that T(k+1) = k+1, and we show that it is true using the induction hypothesis.

$$T(k+1) = T(k) + 1$$
 (defintion of T(k+1))
= $k + 1$ (induction hypothesis)

We have shown that P(k) true implies that P(k+1) is true so by the principle of mathematical induction we conclude that P(n) is true for all $n \in \mathbb{N}$.

- (4) Consider the following relations on the set $A = \{1, 2, 3\}$:
 - $R = \{(1,1), (1,2), (1,3), (3,3)\},\$
 - $S = \{(1,1), (1,2), (2,1), (2,2), (3,3)\},\$
 - $T = \{(1,1), (1,2), (2,2), (2,3)\},\$
 - \bullet $A \times A$.

For each of these relations determine whether it is symmetric, antisymmetric, reflexive, or transitive.

S and $A \times A$ are symmetric.

R and T are antisymmetric.

S and $A \times A$ are reflexive.

 $R, S \text{ and } A \times A \text{ are transitive.}$

