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CISC-102 
Fall 2016 
Week 1 

David Rappaport  daver@cs.queensu.ca 
Goodwin G-532 
Office Hours:   
 Monday 1:00-3:00 (or by appointment) 

Homework

• Homework every week. Keep up to date or you risk falling behind.  

• Homework will be solved in class on due date.  

• Homework is not handed in, and not graded.  

• Quizzes and Final exam are based on homework questions.  

Assessment
• 4 quizzes, 17% each 
• 1 final 32% 
• You may miss up to two quizzes with my explicit permission.  

If you miss quizzes then the marking scheme will be revised for you as follows: 
1 missed - 3 quizzes 20% each and 40% final. 
2 missed - 2 quizzes 25%, and 50% final 

• You must pass the final (obtain at least 50%) to pass the course.  
• Attending class is not compulsory, and I will not take attendance.  

However… 
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Motivation
• According to a fairly recent poll (33,000 CDN students interviewed in 2014) the 

preferred employer is Google. 
• I have been given a communication from an applicant to Google with tips on how to 

conduct an interview. 
• #1 tip Algorithm Complexity: You need to know Big-O. If you struggle with basic big-

O complexity analysis, then you are almost guaranteed not to get hired.  
• Mastering discrete mathematics is the direct pre-requisite to mastering algorithms and 

complexity. 
• You should view this course as a language course. You will be learning the language 

of mathematics and computing! 
• Math can be fun.  
• Math is beautiful! 
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Beauty  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• The picture on the previous page is a work of art titled “Beauty”.  
(Prints can be purchased on-line.) 

• The equation  
                       
                        eiπ + 1 = 0  
 
consists of the most important concepts in mathematics: 
• numbers  

0,1 (integers)  
π, e (irrational real numbers)  
i (a complex number) 

•  operations  
 + × and exponentiation (exp. function) 

• and the relation = 



Week 1 Fall 2016 �  of �5 25

Motivation
• Math is a human invention just like music, painting, sculpture, poetry, hockey, 

basketball, soccer, fishing … 

And how do you become proficient at music, hockey, fishing … ? 

Practice, practice, practice. 
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The Perfect Introductory Problem:  
Counting hand shakes 

Alice is having a birthday party at her house, and has invited Bob, Carl, Diane, Eve, 
Frank, and George.  

They all shake hands with each other. 

Q: How many handshakes are there? 

George says, “ I know the answer and I can prove it to you. There are 7 of us, so I shake 
hands with 6 other people. That’s also true for everyone else. So the total number of hand 
shakes is 6 × 7 = 42.”  

Frank says, “ I have another way of working this out. Suppose there’s only two of us, 
just George and I. That’s 1 handshake. For 3 of us Eve, Frank and George, we have  

E and  F  shake hands 
E and G  shake  hands 
F and G  shake hands. 3 hand shakes.  

And for 4 of us, Diane, Eve, Frank, and George we have  

D and E  shake hands 
D and F  shake hands 
D and G shake hands 
E and  F  shake hands 
E and G  shake  hands 
F and G  shake hands. 6 hand shakes. 

I see the pattern  (3 × 2) / 2 = 3,  
                            (4 × 3) / 2 = 6. 

So with 7 of us the correct answer is  

    (6 × 7) /2 = 21. 

Who’s right? 
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Sets
• We convert the hand shake problem into an “official” math problem using proper 

notation. 
• The basic building block will be the set. 
• A set is a collection of distinct elements. 

Examples
A={1,3,5,7,9},  
B={x | x is an integer, 0 ≤ x < 10}  
C={x : x is an odd integer, 0 < x < 10}  

A ⊆ C  (A is a subset of C) 
C ⊆ A  (C is a subset of A) 
A = C (A and C are equal, that is the elements of A and C are the same. 

A ⊆ B ( A is a subset of B)  
B ⊈ A  (B is not a subset of A) 

A ⊂ B (A is a proper subset of B) 
B ⊄ A (B is not a proper subset of A) 

1 ∈ A (1 is an element of A) 
{ 1 } ⊆ A 
{ 1 } ⊂ A 

Sets can have infinitely many elements
ℕ = the set of natural numbers: 1, 2, 3, . . .  
ℤ = the set of all integers: ...,−2,−1,0,1,2,… 
ℚ = the set of rational numbers  
ℝ = the set of real numbers  
ℂ = the set of complex numbers  

Observe that ℕ ⊆ ℤ ⊆ ℚ ⊆ ℝ ⊆ ℂ.  

U : All sets under investigation in any application of set theory are assumed to belong to 
some fixed large set called the universal set.  

∅ : A set with no elements is called the empty set or null set . 

For any set A, we have: ∅ ⊆ A ⊆ U  
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The handshake problem
Let S = {a,b,c,d,e,f,g} denote the set of party goers, and a handshake can be represented 
as a two element subset of S. (For example {a,b} denotes the handshake between Alice 
and Bob.) 

Q. How many two element subsets are there of the set S? 

Generalizing the handshake problem
Suppose that S is a set consisting of n elements.  
Q. How many two element subsets are there of the set S? 

The hand shake problem seems frivolous but it is actually a representation of an 
important mathematical concept. For example if we wanted to know which handshake 
was the “best” we would have to compare n(n-1)/2 of them. Let n = 35, 000, 000 (the 
population of Canada) we would have to compare 612,499,982,500,000 or roughly 612 
trillion hand shakes. (Too much!) 
 
If we test one handshake per second it would take roughly  31,688 Years, 269 Days, 1 
Hour. (Too long!) 
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Problem from SN
1.26  Which of the following sets are equal?  
A = {x | x2 − 4x + 3 = 0},  
B = {x | x2 − 3x + 2 = 0},   
C = {x | x ∈ ℕ, x < 3}, 
D = {x | x ∈ℕ, x is odd, x < 5},   
E = {1, 2}, 
F = {1,2,1}, 
G = {3, 1},  
H = {1,1,3}.  

NOTE: To determine the elements of sets A and B, you need to be able to factor 
quadratic equations. This is a topic that you may or may not be familiar with. For this 
course it is assumed that you are able to do this factoring or pick it up. All examples that 
you will see in this course will have integer solutions. Here’s a link to a web page with 
some good tips for factoring quadratic equations: https://www.mathsisfun.com/algebra/
factoring-quadratics.html  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Graph of  x2 − 4x + 3.  
The function crosses the x-axis at two points x = 1, and x = 3. 
Note: x2 − 4x + 3 = (x - 1) (x - 3).  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Graph of  x2 − 3x + 2.  
The function crosses the x-axis at two points x = 1, and x = 2. 
Note: x2 − 4x + 3 = (x - 1) (x - 2).  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Sets
Definition: (From Schaum’s Notes) 
A set may be viewed as any well-defined collection of objects, called the elements or members of 
the set.  

This sentence defines in a mathematical sense the term set and the term element.  

Key things to remember about sets. 
• Always use curly braces { }. 
• The elements are well-defined, that is, each element can be distinguished from another. 
• A set is an un-ordered collection of elements. 
Notation

A = { 1, 2, 3} is a set of 3 elements. 

1 ∈ A (1 is an element of the set A.) 

B = {1,3,2} implies that A = B.  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Subset
Let A and B be two sets, where every element of A is also an element of B.  

For example:  
A = {red, black}, B = {red, black, green}. 

Let a be a symbol that denotes an arbitrary object.  
Observe that:  if a ∈ A then a ∈ B.  
We can say that A is contained in B, or A is a subset of B. 

Definition: Let X and Y be two sets such that a ∈ X implies a ∈ Y. We then can say that X is a 
subset of Y, and notate it as X ⊆ Y.  

Suppose X and Y are two sets such that: 
X ⊆ Y and Y ⊆ X.  
That means a ∈ X implies a ∈ Y 
and a ∈ Y implies a ∈ X.   So in fact the sets are equal.  

Definition: Let X and Y be two sets.  
If X = Y then X ⊆ Y and Y ⊆ X. 
And if X ⊆ Y and Y ⊆ X then X=Y. 

These two sentences can be expressed in a single sentence as: 

X = Y if and only if X ⊆ Y and Y ⊆ X. 

Definition: Let X and Y be two sets. 
If  X ⊆ Y  and X ≠ Y then we say that  
X is a proper subset of Y, and notate it as: 
X ⊂ Y.  

Another way to say this is: X is a proper subset of  Y if  every element of X is also an element of 
Y and there exists at least one element of Y that is not an element of X.  
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Find the definitions and examples in SN for the symbols.  

⊈ (not a subset) ⊄ (not a proper subset) 
⊇ (superset) ⊉ (not a superset) 
⊃ (proper superset) ⊅ (not a proper superset)  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Disjoint Sets
Let A and B be two sets. If A and B have no elements in common then we say that they are 
disjoint.   

Using subset notation we can say that if A and B are disjoint then A ⊈ B and B ⊈ A.  

However, if A ⊈ B and B ⊈ A then A and B may not be disjoint.  

U : All sets under investigation in any application of set theory are assumed to belong to some 
fixed large set called the universal set.  

∅ : A set with no elements is called the empty set or null set . 

The empty set is a subset of every set, and the universal set is a superset of every set. 

Using symbols the blue sentence can be expressed as follows: 

For any set A, we have: ∅ ⊆ A ⊆ U  
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Examples

Consider the set A = { 1, 2, 3}. 

A is a set consisting of 3 elements.  

{1} ⊆ A, ({1} is a subset of A) 

{1} ⊂ A, ({1} is a proper subset of A) 

1 ∈ A ( 1 is an element of A) 

{1,2,3} ⊆ A  

{1,2,3} ⊄ A 

{1,2} ⊂  A 

∅ ⊆ A and ∅ ⊂ A 
A ⊆ ℕ and A ⊂ ℕ 

Examples:

People in a room. 
Coins in your pocket. 
     
Note: If you have two (or more) quarters in your pocket then you  need to be able to distinguish 
one from the other if you want to consider the coins as a set. If you have no coins in your pocket 
then the set of coins in your pockets is the empty set. 
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Seating Arrangements
There is a large table at the party and Alice wants to experience every possible seating 
arrangement. How many ways can 7 people sit at a table? 
 

  

This “seating arrangement question” is equivalent to asking for the number of different ways to 
order 7 people.  

Number of ways to order 1 person? 1.  

Number of ways to order 2 people?  
(1,2) (2,1).  2×1 

Number of ways to order 3 people?  
(3,1,2)(3,2,1)(1,3,2)(2,3,1)(1,2,3)(2,13). 3×2×1 

Number of ways to order 4 people?  
Guess: 4×3×2×1= 4! 

1	 2	
3

5	

4	

6	
7	
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Permutations
There are n! ways to order n distinct objects 

Recall n! (n factorial) is given by the expression:  

n! = n× (n-1) ×(n-2) × … ×1 

Selection with ordering
How many ways are there to pick  7 people out of a class of 70 and seat them into 7 numbered 
chairs? (Selection with ordering.) 

1st pick has 70 choices. 
2nd pick has 69 choices. 
3rd pick has 68 choices. 
4th pick has 67 choices. 
5th pick has 66 choices. 
6th pick has 65 choices. 
7th pick has 64 choices. 

So the number of ways to pick 7 people out of a class of 70 is:  

70 × 69 × 68 × 67 × 66 × 65 × 64 = 70!/63! 

Lottery Tickets
Lotto 6-49,  choose 6 numbers from 1 to 49. 

How many ways are there to choose to these numbers? 

A very simplified version of this game is Lotto 1- 49, where players choose 1 number from 49. 
There are 49 choices. 

Note that the probability (the odds) of winning Lotto 1- 49 is 1/49. (one choice divided by the 
total number of choices) 

Consider Lotto 2 - 49, where you have to pick 2 numbers from 49.  
  
A tempting but wrong guess would be 49 × 48 choices.  

Suppose choice 1 is 42, and choice 2 is 18. That is equivalent to choice 1 is 18 and choice 2 is 
42, so 49 × 48 double counts all possibilities.  

The actual answer is 49×48/2!. 
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Combinations (Selection without ordering)
For lotto 6-49, players choose 6 numbers from 1 to 49. 

How many ways are there to choose to these numbers? 

Solution:  
49×48×47×46×45×44/6! =13,983,816. 

This can also be written as:  

and pronounced 49 choose 6. 

What is the probability that any single choice is the winning number? 

1/13,983,816 

The current price of a Lotto 6-49 card is $3.  

The “fair” prize for choosing the winning numbers should be $41,951,448. 

The minimum jackpot is $5,000,000.  
There have been occurrences when the Lotto 6-49 jackpot exceeded the fair prize.  

The largest jackpot (as of Aug. 2016) was $64,000,000 on  October 17, 2015. 

✓
49

6

◆
=

49!

43!6!
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Set Operators
Operators on sets are 

 union  ∪  and  intersection ∩. 

Definitions: 

Logical Operators

pronounced  p and q  

Both p and q have to be true for the compound proposition p and q to be true.  
 

pronounced  p or q  

At least one of p or q must be true for the compound proposition p or q to be true.  

We can rewrite our definition for set union and set intersection using logical operators as follows: 
 

4 SET THEORY [CHAP. 1

However, if A and B are two arbitrary sets, it is possible that some objects are in A but not in B, some are
in B but not in A, some are in both A and B, and some are in neither A nor B; hence in general we represent A

and B as in Fig. 1-1(c).

Arguments and Venn Diagrams

Many verbal statements are essentially statements about sets and can therefore be described by Venn diagrams.
Hence Venn diagrams can sometimes be used to determine whether or not an argument is valid.

EXAMPLE 1.3 Show that the following argument (adapted from a book on logic by Lewis Carroll, the author
of Alice in Wonderland) is valid:

S1: All my tin objects are saucepans.
S2: I find all your presents very useful.
S3: None of my saucepans is of the slightest use.

S : Your presents to me are not made of tin.

The statements S1, S2, and S3 above the horizontal line denote the assumptions, and the statement S below
the line denotes the conclusion. The argument is valid if the conclusion S follows logically from the assumptions
S1, S2, and S3.

By S1 the tin objects are contained in the set of saucepans, and by S3 the set of saucepans and the set of
useful things are disjoint. Furthermore, by S2 the set of “your presents” is a subset of the set of useful things.
Accordingly, we can draw the Venn diagram in Fig. 1-2.

The conclusion is clearly valid by the Venn diagram because the set of “your presents” is disjoint from the
set of tin objects.

Fig. 1-2

1.4 SET OPERATIONS

This section introduces a number of set operations, including the basic operations of union, intersection, and
complement.

Union and Intersection

The union of two sets A and B, denoted by A ∪ B, is the set of all elements which belong to A or to B;
that is,

A ∪ B = {x | x ∈ A or x ∈ B}
Here “or” is used in the sense of and/or. Figure 1-3(a) is a Venn diagram in which A ∪ B is shaded.

The intersection of two sets A and B, denoted by A ∩ B, is the set of elements which belong to both A and
B; that is,

A ∩ B = {x | x ∈ A and x ∈ B}
Figure 1-3(b) is a Venn diagram in which A ∩ B is shaded.
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CHAP. 4] LOGIC AND PROPOSITIONAL CALCULUS 71

The fundamental property of a compound proposition is that its truth value is completely determined by the
truth values of its subpropositions together with the way in which they are connected to form the compound
propositions. The next section studies some of these connectives.

4.3 BASIC LOGICAL OPERATIONS

This section discusses the three basic logical operations of conjunction, disjunction, and negation which
correspond, respectively, to the English words “and,” “or,” and “not.”

Conjunction, p ∧ q

Any two propositions can be combined by the word “and” to form a compound proposition called the
conjunction of the original propositions. Symbolically,

p ∧ q

read “p and q,” denotes the conjunction of p and q. Since p ∧ q is a proposition it has a truth value, and this truth
value depends only on the truth values of p and q. Specifically:

Definition 4.1: If p and q are true, then p ∧ q is true; otherwise p ∧ q is false.

The truth value of p ∧ q may be defined equivalently by the table in Fig. 4-1(a). Here, the first line is a short
way of saying that if p is true and q is true, then p ∧ q is true. The second line says that if p is true and q is false,
then p ∧ q is false. And so on. Observe that there are four lines corresponding to the four possible combinations
of T and F for the two subpropositions p and q. Note that p ∧ q is true only when both p and q are true.

Fig. 4-1

EXAMPLE 4.1 Consider the following four statements:

(i) Ice floats in water and 2 + 2 = 4. (iii) China is in Europe and 2 + 2 = 4.

(ii) Ice floats in water and 2 + 2 = 5. (iv) China is in Europe and 2 + 2 = 5.

Only the first statement is true. Each of the others is false since at least one of its substatements is false.

Disjunction, p ∨ q

Any two propositions can be combined by the word “or” to form a compound proposition called the disjunction
of the original propositions. Symbolically,

p ∨ q

read “p or q,” denotes the disjunction of p and q. The truth value of p ∨ q depends only on the truth values of p
and q as follows.
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A [B = {x : x 2 A _ x 2 B}

A \B = {x : x 2 A ^ x 2 B}
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For example: 

Suppose A is the set of guitars and B is the set of red musical instruments.  

• An element x is in the set of A union B if it is a guitar or if it is a red musical instrument.  

• An element of x is in the set of A intersection B if x is red and x is a guitar. 
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Venn Diagrams
Useful for providing intuitive insight. 

Note the rectangle surrounding the circles denotes the Universe U. 

CHAP. 1] SET THEORY 3

Universal Set, Empty Set

All sets under investigation in any application of set theory are assumed to belong to some fixed large set
called the universal set which we denote by

U

unless otherwise stated or implied.
Given a universal set U and a property P, there may not be any elements of U which have property P. For

example, the following set has no elements:

S = {x | x is a positive integer, x2 = 3}

Such a set with no elements is called the empty set or null set and is denoted by

∅

There is only one empty set. That is, if S and T are both empty, then S = T , since they have exactly the same
elements, namely, none.

The empty set ∅ is also regarded as a subset of every other set. Thus we have the following simple result
which we state formally.

Theorem 1.2: For any set A, we have ∅ ⊆ A ⊆ U.

Disjoint Sets

Two sets A and B are said to be disjoint if they have no elements in common. For example, suppose

A = {1, 2}, B = {4, 5, 6}, and C = {5, 6, 7, 8}

Then A and B are disjoint, and A and C are disjoint. But B and C are not disjoint since B and C have elements
in common, e.g., 5 and 6. We note that if A and B are disjoint, then neither is a subset of the other (unless one is
the empty set).

1.3 VENN DIAGRAMS

A Venn diagram is a pictorial representation of sets in which sets are represented by enclosed areas in the
plane. The universal set U is represented by the interior of a rectangle, and the other sets are represented by disks
lying within the rectangle. If A ⊆ B, then the disk representing A will be entirely within the disk representing B

as in Fig. 1-1(a). If A and B are disjoint, then the disk representing A will be separated from the disk representing
B as in Fig. 1-1(b).

Fig. 1-1
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The complement of a set A written Ac  is defined as: 

 

A

c = {x|x /2 A}
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The relative complement of a set B with respect to A, sometimes called the difference

&  

(The relative complement is sometimes written as  A – B. ) 
 
 

6 SET THEORY [CHAP. 1

Fig. 1-4

Complements, Differences, Symmetric Differences

Recall that all sets under consideration at a particular time are subsets of a fixed universal set U. The absolute
complement or, simply, complement of a set A, denoted by AC, is the set of elements which belong to U but which
do not belong to A. That is,

AC = {x | x ∈ U, x /∈ A}
Some texts denote the complement of A by A′ or Ā. Fig. 1-4(a) is a Venn diagram in which AC is shaded.

The relative complement of a set B with respect to a set A or, simply, the difference of A and B, denoted by
A\B, is the set of elements which belong to A but which do not belong to B; that is

A\B = {x | x ∈ A, x /∈ B}
The set A\B is read “A minus B.” Many texts denote A\B by A − B or A ∼ B. Fig. 1-4(b) is a Venn diagram in
which A\B is shaded.

The symmetric difference of sets A and B, denoted by A ⊕ B, consists of those elements which belong to A

or B but not to both. That is,

A ⊕ B = (A ∪ B)\(A ∩ B) or A ⊕ B = (A\B) ∪ (B\A)

Figure 1-4(c) is a Venn diagram in which A ⊕ B is shaded.

EXAMPLE 1.5 Suppose U = N = {1, 2, 3, . . .} is the universal set. Let

A = {1, 2, 3, 4}, B = {3, 4, 5, 6, 7}, C = {2, 3, 8, 9}, E = {2, 4, 6, . . .}
(Here E is the set of even integers.) Then:

AC = {5, 6, 7, . . .}, BC = {1, 2, 8, 9, 10, . . .}, EC = {1, 3, 5, 7, . . .}

That is, EC is the set of odd positive integers. Also:

A\B = {1, 2}, A\C = {1, 4}, B\C = {4, 5, 6, 7}, A\E = {1, 3},
B\A = {5, 6, 7}, C\A = {8, 9}, C\B = {2, 8, 9}, E\A = {6, 8, 10, 12, . . .}.

Furthermore:

A ⊕ B = (A\B) ∪ (B\A) = {1, 2, 5, 6, 7}, B ⊕ C = {2, 4, 5, 6, 7, 8, 9},
A ⊕ C = (A\C) ∪ (B\C) = {1, 4, 8, 9}, A ⊕ E = {1, 3, 6, 8, 10, . . .}.

Fundamental Products

Consider n distinct sets A1, A2, …, An. A fundamental product of the sets is a set of the form

A∗
1 ∩ A∗

2 ∩ . . . ∩ A∗
n where A∗

i = A or A∗
i = AC

A [B = {x : x 2 A _ x 2 B}

A \B = {x : x 2 A ^ x 2 B}
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The symmetric difference of sets A and B: 

The symmetric difference consists of elements that are in A or in B but not in both.		
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Complements, Differences, Symmetric Differences

Recall that all sets under consideration at a particular time are subsets of a fixed universal set U. The absolute
complement or, simply, complement of a set A, denoted by AC, is the set of elements which belong to U but which
do not belong to A. That is,
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Some texts denote the complement of A by A′ or Ā. Fig. 1-4(a) is a Venn diagram in which AC is shaded.

The relative complement of a set B with respect to a set A or, simply, the difference of A and B, denoted by
A\B, is the set of elements which belong to A but which do not belong to B; that is

A\B = {x | x ∈ A, x /∈ B}
The set A\B is read “A minus B.” Many texts denote A\B by A − B or A ∼ B. Fig. 1-4(b) is a Venn diagram in
which A\B is shaded.

The symmetric difference of sets A and B, denoted by A ⊕ B, consists of those elements which belong to A

or B but not to both. That is,
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Furthermore:

A ⊕ B = (A\B) ∪ (B\A) = {1, 2, 5, 6, 7}, B ⊕ C = {2, 4, 5, 6, 7, 8, 9},
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