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Pascal’s Triangle  

 An easy way to calculate a table of binomial coefficients 
was recognized centuries ago by mathematicians in India, 
China, Iran and Europe. In the west the technique is 
named after the French mathematician  
Blaise Pascal (1623-1662). In the example below each 
row represents the binomial coefficients as used in the 
binomial theorem.  
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ing trick, we can reduce the problem of counting such distributions to the
problem we just solved: We borrow 1 penny from each child, and then dis-
tribute the whole amount (i.e., n + k pennies) to the children so that each
child gets at least one penny. This way every child gets back the money we
borrowed from him or her, and the lucky ones get some more. The “more”
is exactly n pennies distributed to k children. We already know that the
number of ways to distribute n+ k pennies to k children so that each child
gets at least one penny is

(n+k−1
k−1

)
. So we have the next result:

Theorem 3.4.2 The number of ways to distribute n identical pennies to
k children is

(n+k−1
k−1

)
.

3.4.1 In how many ways can you distribute n pennies to k children if each child
is supposed to get at least 2?

3.4.2 We distribute n pennies to k boys and ℓ girls in such a way that (to be
really unfair) we require that each of the girls gets at least one penny (but we do
not insist on the same thing for the boys). In how many ways can we do this?

3.4.3 A group of k earls are playing cards. Originally, they each have p pennies.
At the end of the game, they count how much money they have. They do not
borrow from each other, so that each cannot loose more than his p pennies. How
many possible results are there?

3.5 Pascal’s Triangle

To study various properties of binomial coefficients, the following picture is
very useful. We arrange all binomial coefficients into a triangular scheme:
in the “zeroth” row we put

(0
0

)
; in the first row, we put

(1
0

)
and

(1
1

)
; in the

second row,
(2
0

)
,
(2
1

)
, and

(2
2

)
; etc. In general, the nth row contains the num-

bers
(n
0

)
,
(n
1

)
, . . . ,

(n
n

)
. We shift these rows so that their midpoints match;

this way we get a pyramidlike scheme, called Pascal’s Triangle (named af-
ter the French mathematician and philosopher Blaise Pascal, 1623–1662).
The figure below shows only a finite piece of Pascal’s Triangle.
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To obtain the entries by hand in a simple way we can use 
the identity:  

. 

 

!  
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50 3. Binomial Coefficients and Pascal’s Triangle

We can replace each binomial coefficient by its numerical value to get
another version of Pascal’s Triangle (going a little further down, to the
eighth row):

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

3.5.1 Prove that Pascal’s Triangle is symmetric with respect to the vertical line
through its apex.

3.5.2 Prove that each row of Pascal’s Triangle starts and ends with 1.

3.6 Identities in Pascal’s Triangle

Looking at Pascal’s Triangle, it is not hard to notice its most important
property: Every number in it (other than the 1’s on the boundary) is the
sum of the two numbers immediately above it. This, in fact, is a property of
the binomial coefficients we already met, namely, equation (1.8) in Section
1.8: (

n

k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
. (3.2)

This property of Pascal’s Triangle enables us to generate the triangle
very fast, building it up row by row, using (3.2). It also gives us a tool to
prove many properties of the binomial coefficients, as we shall see.

As a first application, let us give a new solution to exercise 3.1.2. There
the task was to prove the identity

(
n

0

)
−

(
n

1

)
+

(
n

2

)
−

(
n

3

)
+ · · · + (−1)n

(
n

n

)
= 0, (3.3)

using the Binomial Theorem. Now we give a proof based on (3.2): We
can replace

(n
0

)
by

(n−1
0

)
(both are just 1),

(n
1

)
by

(n−1
0

)
+

(n−1
1

)
,
(n
2

)
by(n−1

1

)
+

(n−1
2

)
, etc. Thus we get the sum

(
n − 1

0

)
−

[(
n − 1

0

)
+

(
n − 1

1

)]
+

[(
n − 1

1

)
+

(
n − 1

2

)]
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ing trick, we can reduce the problem of counting such distributions to the
problem we just solved: We borrow 1 penny from each child, and then dis-
tribute the whole amount (i.e., n + k pennies) to the children so that each
child gets at least one penny. This way every child gets back the money we
borrowed from him or her, and the lucky ones get some more. The “more”
is exactly n pennies distributed to k children. We already know that the
number of ways to distribute n+ k pennies to k children so that each child
gets at least one penny is

(n+k−1
k−1

)
. So we have the next result:

Theorem 3.4.2 The number of ways to distribute n identical pennies to
k children is

(n+k−1
k−1

)
.

3.4.1 In how many ways can you distribute n pennies to k children if each child
is supposed to get at least 2?

3.4.2 We distribute n pennies to k boys and ℓ girls in such a way that (to be
really unfair) we require that each of the girls gets at least one penny (but we do
not insist on the same thing for the boys). In how many ways can we do this?

3.4.3 A group of k earls are playing cards. Originally, they each have p pennies.
At the end of the game, they count how much money they have. They do not
borrow from each other, so that each cannot loose more than his p pennies. How
many possible results are there?

3.5 Pascal’s Triangle

To study various properties of binomial coefficients, the following picture is
very useful. We arrange all binomial coefficients into a triangular scheme:
in the “zeroth” row we put

(0
0

)
; in the first row, we put

(1
0

)
and

(1
1

)
; in the

second row,
(2
0

)
,
(2
1

)
, and

(2
2

)
; etc. In general, the nth row contains the num-

bers
(n
0

)
,
(n
1

)
, . . . ,

(n
n

)
. We shift these rows so that their midpoints match;

this way we get a pyramidlike scheme, called Pascal’s Triangle (named af-
ter the French mathematician and philosopher Blaise Pascal, 1623–1662).
The figure below shows only a finite piece of Pascal’s Triangle.
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Consider the sum of elements in a row of  Pascal’s 
triangle. If we label the top row 0, then it appears that row 
i sums to the value 2i. Can you explain why this is the 
case? 

!  

50 3. Binomial Coefficients and Pascal’s Triangle

We can replace each binomial coefficient by its numerical value to get
another version of Pascal’s Triangle (going a little further down, to the
eighth row):

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

3.5.1 Prove that Pascal’s Triangle is symmetric with respect to the vertical line
through its apex.

3.5.2 Prove that each row of Pascal’s Triangle starts and ends with 1.

3.6 Identities in Pascal’s Triangle

Looking at Pascal’s Triangle, it is not hard to notice its most important
property: Every number in it (other than the 1’s on the boundary) is the
sum of the two numbers immediately above it. This, in fact, is a property of
the binomial coefficients we already met, namely, equation (1.8) in Section
1.8: (

n

k

)
=
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n − 1
k − 1
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+

(
n − 1
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)
. (3.2)

This property of Pascal’s Triangle enables us to generate the triangle
very fast, building it up row by row, using (3.2). It also gives us a tool to
prove many properties of the binomial coefficients, as we shall see.

As a first application, let us give a new solution to exercise 3.1.2. There
the task was to prove the identity
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using the Binomial Theorem. Now we give a proof based on (3.2): We
can replace
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ing trick, we can reduce the problem of counting such distributions to the
problem we just solved: We borrow 1 penny from each child, and then dis-
tribute the whole amount (i.e., n + k pennies) to the children so that each
child gets at least one penny. This way every child gets back the money we
borrowed from him or her, and the lucky ones get some more. The “more”
is exactly n pennies distributed to k children. We already know that the
number of ways to distribute n+ k pennies to k children so that each child
gets at least one penny is

(n+k−1
k−1

)
. So we have the next result:

Theorem 3.4.2 The number of ways to distribute n identical pennies to
k children is

(n+k−1
k−1

)
.

3.4.1 In how many ways can you distribute n pennies to k children if each child
is supposed to get at least 2?

3.4.2 We distribute n pennies to k boys and ℓ girls in such a way that (to be
really unfair) we require that each of the girls gets at least one penny (but we do
not insist on the same thing for the boys). In how many ways can we do this?

3.4.3 A group of k earls are playing cards. Originally, they each have p pennies.
At the end of the game, they count how much money they have. They do not
borrow from each other, so that each cannot loose more than his p pennies. How
many possible results are there?

3.5 Pascal’s Triangle

To study various properties of binomial coefficients, the following picture is
very useful. We arrange all binomial coefficients into a triangular scheme:
in the “zeroth” row we put

(0
0

)
; in the first row, we put
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)
and
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; in the

second row,
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, and
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)
; etc. In general, the nth row contains the num-

bers
(n
0

)
,
(n
1

)
, . . . ,

(n
n

)
. We shift these rows so that their midpoints match;

this way we get a pyramidlike scheme, called Pascal’s Triangle (named af-
ter the French mathematician and philosopher Blaise Pascal, 1623–1662).
The figure below shows only a finite piece of Pascal’s Triangle.
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Now let’s compute the sum of squares of the entries of 
each row in Pascal’s triangle.  

12 = 1 
12 + 12 = 2 
12 + 22 + 12 = 6 
12 + 32 + 32 +12 = 20 
12 + 42 + 62 + 42 + 12 = 70 

These sums all appear in the middle row of Pascal’s 
triangle.  

!  
 Which leads us to conjecture that: 

 

50 3. Binomial Coefficients and Pascal’s Triangle

We can replace each binomial coefficient by its numerical value to get
another version of Pascal’s Triangle (going a little further down, to the
eighth row):

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

3.5.1 Prove that Pascal’s Triangle is symmetric with respect to the vertical line
through its apex.

3.5.2 Prove that each row of Pascal’s Triangle starts and ends with 1.

3.6 Identities in Pascal’s Triangle

Looking at Pascal’s Triangle, it is not hard to notice its most important
property: Every number in it (other than the 1’s on the boundary) is the
sum of the two numbers immediately above it. This, in fact, is a property of
the binomial coefficients we already met, namely, equation (1.8) in Section
1.8: (
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+
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. (3.2)

This property of Pascal’s Triangle enables us to generate the triangle
very fast, building it up row by row, using (3.2). It also gives us a tool to
prove many properties of the binomial coefficients, as we shall see.

As a first application, let us give a new solution to exercise 3.1.2. There
the task was to prove the identity
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Before proving the theorem there are two preliminary 
lemmas. 

Lemma 1: 

 
For all non-negative integers n,k, n > k. 
Proof: Since we already showed that  this 

should be obvious. ⧠ 

�n
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Lemma 2:  
For all non-negative integers m,n,k such that n ≥ m ≥ k. 
Proof: We use a counting argument. The right hand side 
can be viewed as the number of subsets of size k chosen 
from the union of two disjoint sets, S of size m, and T of 
size n. On the left we sum the choices where all k are 
from S, then k-1 from S and 1 from T and so on up to all k 
chosen from set T. ⧠ 

For example: Suppose  
S = {a,b} with |S| = m = 2, and  
T = {c,d,e} with |T| = n = 3   and  
k = 2. So the sum on the right would be: 
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Theorem: 

for all natural numbers n ≥ 1.  

Proof: Using lemma 1 we can write . 

Now we observe that the sum is just a special case of 
lemma 2, where m = n, and k = n, as follows: 

⧠  
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Logic and Propositional Calculus 

Propositional logic was eventually refined using symbolic 
logic. The 17th/18th century philosopher Gottfried 
Leibniz (an inventor of calculus) has been credited with 
being the founder of symbolic logic. Although his work 
was the first of its kind, it was unknown to the larger 
logical community. Consequently, many of the advances 
achieved by Leibniz were re-achieved by logicians like 
George Boole and Augustus De Morgan in the 19th 
century completely independent of Leibniz. 

�8
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A proposition is a statement that is either true or false. 
For example: 
The earth is flat. 
A tomato is a fruit. 
The answer to the ultimate question of life, the universe, 
and everything is 42. 

�9
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Basic operations 

Let p and q be logical variables.  

Basic operations are defined as: 
Conjunction p ∧ q (p and q) 
(true if both p and q are true, otherwise false) 

Disjunction p ∨ q (p or q) 
(true if either p or q are true, otherwise false) 

Negation ¬p (not p) 
(true if p is false (not true), otherwise false)  

�10



Week 10 
 page !  of !11 26

Truth tables 
We can enumerate the values of logical expressions using 
a truth table.  

For example: 

!  

p q ¬q p∧q p∨q

T T F T T

T F T F T

F T F F T

F F T F F

�11
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Notation 
We can denote a logical expression constructed from 
logical variables p,q, and logical operators ∧,∨, and ¬ 
(and, or, not) using the notation P(p,q).  

We call this type of expression a logical proposition. 

For example: ¬(p ∨ q) ( not (p or q)) is a logical 
proposition that depends on the values of p and q. We can 
use truth tables to determine truth values of a logical 
proposition. 

p q (p ∨ q) ¬(p ∨ q)
T T T F

T F T F

F T T F

F F F T

�12
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Definitions 
A tautology is a logical expression that is always true for 
all values of its variables.  
A contradiction is a logical expression that is always false 
(never true) for all values of its variables 

!  

Whether q is true or false, q ⋁ ¬q is always true,  
and q ⋀ ¬q is always false. 

q ¬q q∨¬q q∧¬q
T F T F

F T T F

�13
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Logical Equivalence 
Two propositions (using the same variables)  
P(p,q) Q(p,q) are said to be logically equivalent or 
equivalent or equal if they have identical truth table 
values.  
We notate equivalence: 

P(p,q) ≣ Q(p,q) 

�14
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There are a set of “laws” of logic that are very similar to 
the laws of set theory.  

The laws of logic can be proved by using truth tables.  

�15
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We prove DeMorgan’s law with truth tables 

  

p q ¬ (p∨q)

T T F

T F F

F T F

F F T

¬ p ¬ q ¬ p ∧ ¬q

F F F

F T F

T F F

T T T
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We prove the distributive law with truth tables 

p q r p∨(q∧r)
T T T T

T T F T

T F T T

T F F T

F T T T

F T F F

F F T F

F F F F

p q r (p∨q) ∧(p∨r)

T T T T

T T F T

T F T T

T F F T

F T T T

F T F F

F F T F

F F F F
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Conditional Statements 

A typical statement in mathematics is of the form  
“if p then q”. 

For example:  

In all of these examples variables are assumed to be 
natural numbers. 

if a ≤ b and b ≤ a then a =b  

if a-7 < 0, then a < 7 

if 2 | a then 2 | (a)(b) 

All of these statements are true if a and b are natural 
numbers. 

In logic we use the symbol → to model this type of 
statement. However, using the symbol → in logic does 
not necessarily have a causal relationship between p and 
q.  

“if p then q” is denoted p → q, and pronounced either  
“if p then q” or “p implies q”. 
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A truth table is used to define the outcomes when using 
the → logical operator. 

This definition does not appear to make much sense, 
however, this is how implication is defined in logic.  

if sugar is sweet then lemons are sour.  
         Is a true implication. 
if sugar is sweet then the earth is flat. 
         Is a false implication. 
if the earth is flat then sugar is sweet.  
         Is a true implication. 
if the earth is flat then sugar is bitter.  
          Is a true implication 

p q p → q
T T T

T F F

F T T

F F T
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The truth table for implications can be summarized as: 

1. An implication is true when the “if” part is false, or the 
“then” part is true.  

2. An implication is false only when the “if” part is true, 
and the “then” part is false.  

Note that p → q is logically equivalent to ¬p ∨ q. 

We can verify this with a truth table 
p q ¬p ∨ q
T T

T F

F T

F F
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Biconditional Implications 

A shorthand for the pair of statements  

• if a ≤ b and b ≤ a then a =b  
• if a =b then a ≤ b and b ≤ a 
is: 
a = b if and only if a ≤ b and b ≤ a 

This can be notated as  
a = b ↔ (a ≤ b) ∧ b ≤ a 

An often used abbreviation for “if and only if” is “iff”. 
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A truth table for the biconditional implication is: 

The truth table for biconditional implications can be 
summarized as: 

1. A biconditional implication is true when both p and q 
are true, or both p and q are false.  

Note that p ↔ q is logically equivalent to  
(p →q) ∧ (q → p) as well as (¬p ∨ q) ∧ (¬q ∨ p).  

p q p ↔ q
T T T

T F F

F T F

F F T
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Suppose we have the proposition  
p →q  
the contrapositive:  
¬q → ¬p ? 
is logically equivalent as verified by the following truth 
table. 

The following example may help in understanding the 
contrapositive. 

if 2 | a then 2 | (a)(b) is logically equivalent to 
if 2 ∤(a)(b) then 2 ∤ a.  

p q ¬p ¬q ¬q → ¬p
T T F F T

T F F T F

F T T F T

F F T T T
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Suppose we have the proposition  
p →q  
the converse:  
q → p ? 
is not logically equivalent as verified by the following 
truth table. 

The following example may help in understanding why  
the converse is not logically equivalent to the implication. 

if 2 | a then 2 | (a)(b) is  not logically equivalent to 
if 2 ∣ (a)(b) then 2 ∣ a.  

p q q → p
T T T

T F T

F T F

F F T
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It should be obvious that an implication and its converse 
results in a biconditional implication.  

that is: 
p ↔ q is logically equivalent to  
(p →q) ∧ (q → p) 
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