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CISC-102

Pascal’s Triangle

An easy way to calculate a table of binomial coefficients
was recognized centuries ago by mathematicians in India,
China, Iran and Europe. In the west the technique is
named after the French mathematician

Blaise Pascal (1623-1662). In the example below each
row represents the binomial coefficients as used in the
binomial theorem.
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To obtain the entries by hand in a simple way we can use

the 1dentity:

(1) = (:21) +
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Consider the sum of elements in a row of Pascal’s
triangle. If we label the top row 0, then 1t appears that row
1 sums to the value 2!. Can you explain why this 1s the
case?
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Now let’s compute the sum of squares of the entries of
each row in Pascal’s triangle.

12=1

12+12=2
12+22+12=6

12+ 32+ 32+12 =20
1°+4°+62+4>+12="170

These sums all appear in the middle row of Pascal’s
triangle.

Which leads us to conjecture that:

(1) - (%)
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Before proving the theorem there are two preliminary
lemmas.

Lemma 1:

(D (") = ()
k) \n—k/ — \k
For all non-negative integers n,k, n > k.

Proof: Since we already showed that () = ( " ) this

should be obvious. O
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()= ()

1

Lemma 2:
For all non-negative integers m,n,k such that n >m > k.

Proof: We use a counting argument. The right hand side
can be viewed as the number of subsets of size £ chosen
from the union of two disjoint sets, S of size m, and T of
size n. On the left we sum the choices where all & are
from S, then £~/ from S and 1 from 7 and so on up to all £
chosen from set 7. O

For example: Suppose

S'={a,b} with |S|=m =2, and
T'={c,d,e} with|T|=rn=3 and

k= 2. So the sum on the right would be:

(2 )0-00-O0 -0
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Theorem:

i <n>2 B (Zn)
Z 2 \n
1=0
for all natural numbers n > 1.

Proof: Using lemma 1 we can write (?)2 = (”) ( " )

7 n—1

Now we observe that the sum 1s just a special case of
lemma 2, where m = n, and k£ = n, as follows:
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Logic and Propositional Calculus

Propositional logic was eventually refined using symbolic
logic. The 17th/18th century philosopher Gottfried
Leibniz (an inventor of calculus) has been credited with
being the founder of symbolic logic. Although his work
was the first of its kind, 1t was unknown to the larger
logical community. Consequently, many of the advances
achieved by Leibniz were re-achieved by logicians like
George Boole and Augustus De Morgan in the 19th
century completely independent of Leibniz.
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A proposition 1s a statement that 1s either true or false.
For example:
The earth 1s flat.
A tomato i1s a fruit.
The answer to the ultimate question of life, the universe,
and everything is 42.
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Basic operations
Let p and q be logical variables.

Basic operations are defined as:
Conjunction p A q (p and q)
(true if both p and q are true, otherwise false)

Disjunction p v q (p or q)
(true if either p or q are true, otherwise false)

Negation —p (not p)
(true 1f p 1s false (not true), otherwise false)

10
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Truth tables

We can enumerate the values of logical expressions using
a truth table.

For example:

p q -q PAq pvq
T T F T T
T F T F T
F T F F T
F F T F F

11
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Notation
We can denote a logical expression constructed from

logical variables p,q, and logical operators A,v, and —
(and, or, not) using the notation P(p,q).

We call this type of expression a logical proposition.

For example: —(p v q) ( not (p or q)) is a logical
proposition that depends on the values of p and q. We can

use truth tables to determine truth values of a logical
proposition.

v |[~(PVva

F

M4 4] O
m|H4| M| 4| Q

n|A| 4|

F
F
T

12



Week 10
page 13 of 26

Definitions

A tautology 1s a logical expression that 1s always true for
all values of its variables.

A contradiction 1s a logical expression that is always false
(never true) for all values of its variables

q -q qv-q qr—'q
T F T F
T T F

Whether q is true or false, q vV —q 1s always true,
and g A —q 1s always false.

13
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Logical Equivalence

Two propositions (using the same variables)

P(p,q) Q(p,q) are said to be logically equivalent or
equivalent or equal if they have identical truth table
values.

We notate equivalence:

P(p,q) = Q(p,q)

14
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There are a set of “laws” of logic that are very similar to
the laws of set theory.

The laws of logic can be proved by using truth tables.

15
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b Nnd— = (bv d)—(q01)

b—vd— = (bAd)-(e])

:Smej S, ue3I0AP_(

L= A4-(96) d = I— (®6) sy Juowoydio)
I =d—vd(qg) I =d—nd(eg)
d=d——(}) :Me[ uonnoAuy
A=4Vd(@Qg) L= IANd(e9) N —
d= Jvd(qQ) d = Ad(eQ) .

(4vd)yn(bvd)=(4nD)vd(@Qpy)

(Und)yv (bnad)=(1v b)Ad(ey)

ISME[ ANNQLYSI(]

dv b=bvd(qg)

dAb=DbAd(eg)

:SME[ AN

(4vbyvd=av(bvd)(Qy

UADYANd =un(DAd)(eY)

ISME[ IAIJBIIOSS Y

d=dvd(@qp)

d=dAnad(e])

:smef Judjoduwdpy

suonisodoad Jo viqag[e ay) Jo sme - dqel,

16
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We prove DeMorgan’s law with truth tables

Y q ~(pvq)
T T F
T F F
F T F
F F T
P -q “pATq
F F F
F T F
T F F
T T T

17
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We prove the distributive law with truth tables

p q r pV(QAr)
T T T T

T T F T

T F T T

T F F T

F T T T

F T F F

F F T F

F F F F

p q r (pvq) A(pvr)
T T T T
T T F T
T F T T
T F F T
F T T T
F T F F
F F T F
F F F F

18
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Conditional Statements

A typical statement in mathematics is of the form
“if p then q”.

For example:

In all of these examples variables are assumed to be
natural numbers.

if then
if ,thena <7
if 2 | athen 2 | (a)(b)

All of these statements are true if a and b are natural
numbers.

In logic we use the symbol — to model this type of
statement. However, using the symbol — 1n logic does
not necessarily have a causal relationship between p and

g.

“if p then q” 1s denoted p — q, and pronounced either
“if p then q” or “p implies q”.

19
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A truth table is used to define the outcomes when using
the — logical operator.

p q pP—q
T T T
T F F
F T T
F F T

This definition does not appear to make much sense,
however, this 1s how implication is defined in logic.

if sugar is sweet then lemons are sour.

Is a true implication.
if sugar is sweet then the earth is flat.

Is a false implication.
if the earth 1s flat then sugar 1s sweet.

Is a true implication.
if the earth 1s flat then sugar 1s bitter.

Is a true implication

20
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The truth table for implications can be summarized as:
1. An implication is true when the “if” part is false, or the
“then” part is true.

2. An implication 1s false only when the “if” part 1s true,
and the “then” part is false.

Note that p — q 1s logically equivalent to —p v q.

We can verify this with a truth table

P q PVq
T T
T F
F T
F F

21
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Biconditional Implications

A shorthand for the pair of statements
sifa<band b<athena=b
ifa=bthena<bandb=<a
;S;bifand onlyifa<bandb<a

This can be notated as
a=b(@as<b)ab<a

An often used abbreviation for “if and only 1f” 1s “iff”.

22
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A truth table for the biconditional implication is:

P q p<q
T T T
T F F
F T F
F F T

The truth table for biconditional implications can be
summarized as:

1. A biconditional implication 1s true when both p and q
are true, or both p and q are false.

Note that p <> q 1s logically equivalent to
(P —q) A (q—p)aswellas (7p v @) A (7q v p).

23



Week 10
page 24 of 26

Suppose we have the proposition

P —q

the contrapositive:

~q—"p?

is logically equivalent as verified by the following truth
table.

Y q P q Q=P

n|m| =
n|A|m|
A=A |m|m
—H|m| 4|
A |47+

The following example may help in understanding the
contrapositive.

if 2 | a then 2 | (a)(b) 1s logically equivalent to
if 2 t(a)(b) then 2 | a.

24
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Suppose we have the proposition

P —q

the converse:

q—p?

is not logically equivalent as verified by the following
truth table.

Y q qQa—Pp

n|m| =
n|A|m|
—|m| =+

The following example may help in understanding why
the converse 1s not logically equivalent to the implication.

if 2 | athen 2 | (a)(b) 1s not logically equivalent to
if 2 1 (a)(b) then 2 | a.

25
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It should be obvious that an implication and its converse
results 1n a biconditional implication.

that 1s:
p <> q 1s logically equivalent to

(P > A(qQ— D)

26



