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CISC-102

Properties of the Integers
Leta,b € Z then
l.ifc=a+bthence Z
2.ifc=a-bthence Z
3.ifc=(a)(b)thence Z
4.ifc =a/b,b#0, thence Q

If a & b are integers the quotient a/b may not be an integer. For example if ¢ = 1/2, then c is not
an integer.
On the other hand with ¢ = 6/3 then c is an integer.

We can say that there exists integers a,b such that ¢ = a/b is not an integer.

We can also say that for all integers a,b, b # 0, we have ¢ = a/b is a rational number.



Week 5

Divisibility

Letabe Z,a+#0.
If c= a is an integer,

or alternately if c € Z such that b =ca
then we say that a divides b or equivalently,
b is divisible by a, and this is written

alb

NOTE: Recall long division:
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Quotient——>» 015
Divisor—>» 32 [ 487
0
Dividend 48
32

167
160

Remainder ——>» 7

Referring to the long division example, b = 32, is the divisor a = 487 is the dividend. The

quotient q = 15 and the remainder r="7.

In this case b does not divide a
or equivalently a is not divisible by b.

This can be notated as:

and we can write a =bq + r or, 487 = (32) (15) + 7

Division Algorithm Theorem

Leta,b € Z, b # 0 there exists q,r € Z, such that:

a=bq+r,0< r<|b|

NOTE: The remainder in the Division Algorithm Theorem is always positive.
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Notation
The absolute value of b denoted by

1s defined as:
|b|=b ifb>0

and |b|=-bifb<0.

Therefore for values
a=22,b=7,and a=-22, b=-7 we get
22=(NA3)+1

but

222 =(-7)(4) + 6.

b
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Divisibility Theorems.

Letabce Z. Ifalbandblicthenalc.

Proof:

Suppose a | b then there exists an integer j such that
(1)b=gqj

Similarly if b I ¢ then there exists an integer k such that
(2)c=bk

Replace b in equation ( 2) with aj to get

(3)c=ajk

Thus we have proved thatifalbandblcthenalc. O
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Divisibility Theorems.
Leta,b,ce Z. Ifalbthenal bc.

Proof:
Since a | b there exists an integer j such that

b = aj, and bc = ajc for all (any) c € Z.

It should be obvious that a I ajc ( % = jc is an integer)

soa|bc. O
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Divisibility Theorems.

Letab,ce Z. Ifalbandalc. Thenal (b+c)and
al(b-c).

Proof:

Since a | b there exist a j € Z such that b = aj.
Since a | ¢ there exist a k € Z such that ¢ = ak.
Therefore b + ¢ = (aj + ak) = a(j + k).
Obviously a|a(j+k)soal(b+c).

Similarly a|a(j-k)soal(b-c). O

More Divisibility Theorems.

If albandb#0then|a|<|Db|.

If albandb|athen|a|=|b].

Ifa|lthen|a|=1.

page 6 of 17



Week 5 page 7 of 17

Prime Numbers
Definition: A positive integer p > 1 is called a prime number if its only divisors are 1, -1, and p, -

p.
The first 10 prime numbers are:
2,3,5,7,11,13,17, 19, 23, 29, ...

Definition: If an integer ¢ > 2 is not prime, then it is composite. Every composite number ¢ can
be written as a product of two integers a,b such thata,b ¢ {1,-1, c, -c}.
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Determining whether a number, 7, is prime or composite is difficult computationally. A simple
method (which is in essence of the same computational difficulty as more sophisticated methods)
checks all integers k, 2 <k <+ n to determine divisibility.

Example: Let n = 143

2 does not divide 143

3 does not divide 143

4 does not divide 143

5 does not divide 143

6 does not divide 143

7 does not divide 143

8 does not divide 143

9 does not divide 143

10 does not divide 143
11divides 143, 11 x 13 =143
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Theorem: Every integer n > 1 is either prime or can be written as a product of primes.
For example:

12=2x2x3.

17 is prime.

90=2x5x3x3,

143 =11 x 13.

147=3x7x17.

330=2x5x3x1I.

Note: If factors are repeated we can use exponents.

48 =24 x 3.
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Theorem: Every integer n > 1 is either prime or can be written as a product of primes.

Proof:
(1) Suppose there is an integer k > 1 that is the largest integer that is the product of primes.
This then implies that the integer k+1 is not prime or a product of primes.

(2) Ifk+1 is not prime it must be composite and:

k+tl1=ab, abe Z, abe {l,-1, k+l, -(k+1)}.

(3) Observe that |a| < k+1 and |b| < k+1, because a | k+1 and b | k+1. We assume that k+1 is
the smallest positive integer that is not prime or the product of primes, therefore |a| and |b|
are prime or a product of primes.

(4) Since k+1 is a product of a and b it follows that it too is a product of primes.

(5) Thus we have contradicted the assumption that there is a largest integer that is the product of

primes, and we can therefore conclude that every integer n > 1 is either prime or written as a
product of primes. O
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Mathematical Induction (2"¢ form)
Let P(n) be a proposition defined on a subset of the Natural numbers (b, b+1, b+2, ...) such that:

1) P(b) is true
(Base)
i1) Assume P(j) is true for all j, b<j<k.
(Induction Hypothesis)
ii1) Use Induction Hypothesis to show that P(k+1) is true.
(Induction Step)

NOTE: Go back to all of the proofs using mathematical induction that we have seen so far and
replace the assumption

(1) Assume P(k) is true for k > b. (b is the base case value) by

(2) Assume P(j) is true for all j, b<j <k.”

and the rest of the proof can remain as is.

Assumption (2) above is stronger than assumption (1). Sometimes this form of induction is
called strong induction.

NOTE: A stronger assumption makes it easier to prove the result.
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Let P(n) be the proposition:

S 2t =242 4. 42" =2"F 9
Theorem: P(n) is true forall 1 € N,

Proof:

2
Base: P(1) is 2 — 2 - 2 which is clearly true.
Induction Hypothesis: P(j) is true forj, 1 <j<k.

Induction Step:
k+1

221 — 2k—l—1 —9 s 2]{:—|—1
1=1

(because P(k) is true)
= 2(2F 1) — 2
= 2k+2 — 2
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Theorem: Every integer n > 1 is either prime or can be written as a product of primes.

Proof: (Mathematical Induction of the 2" form) Let P(n) be the proposition that all natural
numbers n > 2 are either prime or the product of primes.

Base: n =2, P(2) is true because 2 is prime.
Induction Hypothesis:

(1) Assume that P(j) is true, for all j, 2 <j <k.
Induction Step: Consider the integer k+1.

(2) Observe that if k+1 is prime P(k+1) is true, so consider the case where k+1 is composite. That
is:k+1=ab, abe Z, abe {1,-1, k+1, -(k+1)}.
(3) Therefore, |a| < k+1 and |p| < k+1.

So |a| and |b| are prime or a product of primes.
(4) Since k+1 is a product of a and b it follows that it too is a product of primes.
(5) Therefore, by the 2nd form of mathematical induction we can conclude that P(n) is true for
alln>2. 0O
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Well-Ordering Principle

In our initial proof that shows that integers greater than 2 are either prime or a product of primes
we assumed that if that wasn’t true for all integers greater than 2, then there was a smallest

integer where the proposition is false. (we called that integer k.) This statement may appear to be
obvious, but there is a mathematical property of the positive integers at play that makes this true.

Theorem: Well Ordering Principle: Let S be a non-empty subset of the positive integers. Then S
contains a least element, that is, S contains an element a <s for all s € S.

» Observe that S could be an infinite set.

« Well ordering does NOT apply to subsets of Z, Q, or R. It is a special property of the positive
integers.
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NOTE: The Well Ordering Principle can be used to prove both forms of the Principle of
Mathematical Induction.

In essence the statement “use the proposition P(k) to show that P(k+1) is true” uses an
underlying assumption:

“Should there be a value of n where the proposition is false then there must be a smallest
value of n where the proposition is false”

In all of our induction proofs so far the value £+1 plays the role of that smallest value of » where
the proposition may be false. For all other values j, b <j < k, we can assume that P(j) is true. In
the induction step we show that P(k+1) is also true, in essence showing that there is no smallest
value of n where the proposition is false. And by well ordering this implies that the result is true
for all values of n.
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Theorem: There exists a prime greater than n for all positive integers n. (We could also say that
there are infinitely many primes.)

Proof: Consider y =n! and x = n! + 1. Let p be a prime divisor of x, such that p < n. This implies
that p is also a divisor of y, because n! is the product of all natural numbers from 1 to n. So we
have p | x and p | y. According to one of the divisibility theorems we have

p|x-y.Butx-y=1 and the only divisor of 1 is -1, or 1, both not prime. So there are no prime
divisors of x less than n. And since every integer is either prime or a product if primes, we either
have x > n is prime, or there exists a prime p, p > n in the prime factorization of x. O
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Theorem: There is no largest prime.
(Proof by contradiction.)

Suppose there is a largest prime. So we can write down all of the finitely many primes as:

{P1,DP2, -5 Duw}

Now let n =P Xp2 X oo Xpw —I— ]_

Observe that n must be larger the P, the largest prime. Therefore 7 is composite and is a

product of primes. Let P denote a prime factor of n. Thus we have

pPrln

Andsincepre {P1, P2y - - « 3 P} we also have

prl (n-1)

We know that px | n and px | (n-1) implies that px | n - (n-1) or px | 1. But no integer divides 1
except 1, and 1 is not prime, so px | 1 is impossible, and raises a mathematical contradiction. This
implies that our assumption that P, is the largest prime is false, and so we conclude that there

is no largest prime. O
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