CISC-102 WINTER 2016

HOMEWORK 3

Please work on these problems and be prepared to share your solutions with classmates in class next Friday. Assignments will not be collected for grading.

Readings

Read sections 1.7 and 1.8 of Schaum's Outline of Discrete Mathematics.
Read section 2.1 of Discrete Mathematics Elementary and Beyond.

Problems

(1) Let $\left\{A_{i}: i \in \mathbb{N}\right\}$ denote an arbitrary indexed class of sets. Let $k \in \mathbb{N}$ Show that

$$
\bigcap_{i \in \mathbb{N}} A_{i} \subseteq A_{k} \subseteq \bigcup_{i \in \mathbb{N}} A_{i}
$$

(2) Prove using mathematical induction that the sum of the first n natural numbers is equal to $\frac{n(n+1)}{2}$. This can also be stated as:

Prove that the proposition $\mathrm{P}(n)$,

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

is true for all $n \in \mathbb{N}$
(3) Prove using mathematical induction that the proposition $\mathrm{P}(n)$,

$$
\sum_{i=1}^{n} \frac{1}{2^{i}}=1-\frac{1}{2^{n}}
$$

(4) Prove using mathematical induction that the proposition $\mathrm{P}(n)$, the number of values storable in a decimal string (a decimal string uses values, $0,1, \ldots, 9$) of length n is 10^{n}.
(5) Prove using mathematical induction that the proposition $\mathrm{P}(n)$, the number of values storable in a string using k different symbols of length n is k^{n}.

