CISC-102 WINTER 2016

HOMEWORK 5

Please work on these problems and be prepared to share your solutions with classmates in class next Friday. Assignments will not be collected for grading.

Readings

Read sections 11.1, 11.2, 11.3, 11.4, and 11.5 of Schaum's Outline of Discrete Mathematics.

Read section 6.1, and 6.2 of Discrete Mathematics Elementary and Beyond.
Problems
(1) Evaluate
(a) $|3-7|$
(b) $|1-4|-|2-9|$
(c) $|-6-2|-|2-6|$
(2) Find the quotient q and remainder r, as given by the Division Algorithm theorem for the following examples.
(a) $\mathrm{a}=500, \mathrm{~b}=17$
(b) $\mathrm{a}=-500, \mathrm{~b}=17$
(c) $\mathrm{a}=500, \mathrm{~b}=-17$
(d) $a=-500, b=-17$
(3) Show that $c \mid 0$, for all $c \in \mathbb{Z}, c \neq 0$.
(4) Let $a, b, c \in \mathbb{Z}$ such that $c \mid a$ and $c \mid b$. Let r be the remainder of the division of b by a, that is there is a $q \in \mathbb{Z}$ such that $b=q a+r, 0 \leq r \leq|b|$. Show that under these condition we have $c \mid r$.
(5) Let $a, b \in \mathbb{Z}$ such that $2 \mid a$. (In other words a is even.) Show that $2 \mid a b$.
(6) Let $a \in \mathbb{Z}$ show that $3 \mid a(a+1)(a+2)$, that is the product of three consecutive integers is divisible by 3 .
(7) Let a be any integer. Let $\mathrm{P}(n)$ denote the proposition:

$$
\sum_{i=0}^{n} a^{i}=\frac{a^{n+1}-1}{a-1}
$$

Prove that $\mathrm{P}(n)$ is true for all integers $n \geq 0$. Although the first form of induction would suffice to prove this result, use the second form of induction.

