## CISC-102 WINTER 2016

HOMEWORK 6

Please work on these problems and be prepared to share your solutions with classmates in class next Friday. Assignments will not be collected for grading.

## Readings

Read sections 11.6 of Schaum's Outline of Discrete Mathematics.
Read section 6.6 ( Don't worry if the theorems of this section seem daunting. The first 3 pages of the section do give a good explanation of gcd, and lcm.) of Discrete Mathematics Elementary and Beyond.

## Problems

(1) Prove, using the second (strong) form of mathematical induction that any integer value greater than 2 can be written as $3 a+4 b+5 c$, where $a, b, c$ are non-negative integers, that is $a, b, c \in \mathbb{Z}, a, b, c \geq 0$. (HINT: You need to use 3 base cases, that is, verify that 3,4 and 5 can be written as $3 a+4 b+5 c$, where $a, b, c$ are non-negative integers.)
(2) Let $a, b, c$ be Integers.
(a) Prove that if $a \mid b$ and $b \mid c$ then $a \mid c$.
(b) Prove that if $a \mid b$ and $a \mid c$, then $a \mid(b+c)$
(c) Prove that if $a \mid b$ and $b \mid a$, then $|a|=|b|$, that is $a= \pm b$
(3) Let $\mathrm{a}=1763$, and $\mathrm{b}=42$
(a) Find $\operatorname{gcd}(a, b)$. Show the steps used by Euclid's algorithm to find $\operatorname{gcd}(a, b)$.
(b) Find integers $x, y$ such that $\operatorname{gcd}(a, b)=a x+b y$
(c) Find $\operatorname{lcm}(a, b)$
(4) Prove $\operatorname{gcd}(a, a+k)$ divides $k$.
(5) If $a$ and $b$ are relatively prime, that is $\operatorname{gcd}(a, b)=1$ then we can always find integers $x, y$ such that $1=a x+b y$. This fact will be useful to prove the following proposition.

Suppose $p$ is a prime such that $p \mid a b$, that is $p$ divides the product $a b$, then $p \mid a$ or $p \mid b$.

