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Lecture 10

Prime Numbers
Definition: A positive integer p > 1 is called a prime 
number if its only divisors are 1, -1, and p, -p. 

The first 10 prime numbers are:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ...

Definition: If an integer c > 2  is not prime, then it is 
composite. Every composite number c can be written as a 
product of two integers a,b such that a,b ∉ {1,-1, c, -c}.
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Theorem: Every integer n  > 1 is either prime or can be 
written as a product of primes.

For example:

12 = 2 × 2 × 3.

17 is prime.

90 = 2 × 5 × 3 × 3.

143 = 11 × 13.

147 = 3 × 7 × 7.

330 = 2 × 5 × 3 × 11.

Note: If factors are repeated we can use exponents.

48 = 24 × 3.
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Theorem: Every integer n  > 1 is either prime or can be 
written as a product of primes.

Proof: 
(1) Suppose there is an integer k  > 1 that is the largest  

integer that is the product of primes. This then implies 
that the integer k+1 is not prime or a product of primes.

(2) If k+1 is not prime it must be composite and:
  k+1 = ab,  a,b ∈ ℤ,  a,b ∉ {1,-1, k+1, -(k+1)}.

(3) Observe that  |a| <  k+1 and |b| <  k+1, because a | k+1 
and b | k+1. We assume that k+1 is the smallest positive 
integer that is not prime or the product of primes, 
therefore  |a| and |b| are prime or a product of primes.
 

(4) Since k+1 is a product of a and b it follows that it too 
is a product of primes.
 

(5) Thus we have contradicted the assumption that there is 
a largest integer that is the product of primes, and we 
can therefore conclude that every integer n > 1 is either 
prime or written as a product of primes.  ◻
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Mathematical Induction (2nd form)

Let P(n) be a proposition defined on a subset of the 
Natural numbers (b, b+1, b+2, ...)  such that:

i) P(b) is true 
(Base) 

ii) Assume P(j) is true for all j, b ≤ j ≤ k. 
 (Induction Hypothesis)

iii) Use Induction Hypothesis to show that P(k+1) is true.
  (Induction Step)

NOTE: Go back to all of the proofs using mathematical 
induction that we have seen so far and replace the 
assumption: 

(1) Assume P(k) is true for k ≥ b. (b is the base case) 

with the following assumption:

(2) Assume P(j) is true for all j, b ≤ j ≤ k.

and the rest of the proof can remain as is.

Assumption (2) above is stronger than assumption (1). 
Sometimes this form of induction is called strong 
induction.  NOTE: A stronger assumption it makes it easier 
to prove the result.  
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Let P(n) be the proposition:
Pn

i=1 2
i = 2 + 22 + · · ·+ 2n = 2n+1 � 2

Theorem: P(n) is true for all n 2 N.

Proof:
Base: P(1) is 2 = 22 � 2   which is clearly true.
Induction Hypothesis: P(j) is true for j, 1 ≤ j ≤ k.
Induction Step: 

                 

k+1X

i=1

2i = 2k+1 � 2 + 2k+1

 (because P(k) is true) 

                          ﻿= 2(2k+1)� 2

                        ﻿= 2k+2 � 2             ⧠
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Theorem: Every integer n  > 1 is either prime or can be 
written as a product of primes. 

Proof: (Mathematical Induction of the 2nd form) Let P(n) 
be the proposition that all natural numbers n ≥ 2 are either 
prime or the product of primes.

Base: n = 2, P(2) is true because 2 is prime.
Induction Hypothesis: 
(1) Assume that P(j) is true, for all j, 2 ≤ j ≤ k.
Induction Step: Consider the integer k+1.

(2) Observe that if k+1 is prime P(k+1) is true, so 
consider the case where k+1 is composite. That is: k+1 = 
ab,  a,b ∈ ℤ,  a,b ∉ {1,-1, k+1, -(k+1)}.  
(3) Therefore, |a| <  k+1 and |b| <  k+1. 
      So |a| and |b| are prime or a product of primes. 
(4) Since k+1 is a product of a and b it follows that it too 
is a product of primes. 
(5) Therefore, by the 2nd form of mathematical induction 
we can conclude that P(n) is true for all n ≥ 2. ◻
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Well-Ordering Principle

In our initial proof that shows that integers greater than 2 
are either prime or a product of primes we assumed that if 
that wasn’t true for all integers greater than 2, then there 
was a smallest integer where the proposition is false. (we 
called that integer k.) This statement may appear to be 
obvious, but there is a mathematical property of the 
positive integers at play that makes this true. 

Theorem: Well Ordering Principle: Let S be a non-empty 
subset of the positive integers. Then S contains a least 
element, that is, S contains an element a ≤ s for all s ∈ S.

•Observe that S could be an infinite set.
•Well ordering does NOT apply to subsets of ℤ, ℚ, or ℝ. 
It is a special property of the positive integers.
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NOTE: The Well Ordering Principle can be used to prove 
both forms of the Principle of Mathematical Induction.

In essence the statement “use the proposition  P(k) to 
show that P(k+1) is true” uses an underlying assumption:

 “Should there be a value of n where the proposition is 
 false then there must be a smallest value of n where 
 the proposition is false”

In all of our induction proofs so far the value k+1 plays 
the role of that smallest value of n where the proposition 
may be false. For all other values j, b ≤ j ≤ k, we can 
assume that P(j) is true. In the induction step we show that 
P(k+1) is also true, in essence showing that there is no 
smallest value of n where the proposition is false. And by 
well ordering this implies that the result is true for all 
values of n.
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Theorem: There exists a prime greater than n for all 
positive integers n. (We could also say that there are 
infinitely many primes.) 

Proof: Consider y = n! and x = n! + 1. Let p be a prime 
divisor of x, such that p ≤ n. This implies that p is also a 
divisor of y, because n! is the product of all natural 
numbers from 1 to n.  So we have p | x and p | y. 
According to one of the divisibility theorems we have 
p | x - y. But x - y = 1 and the only divisor of 1 is -1, or 1, 
both not prime. So there are no prime divisors of x less 
than n. And since every integer is either prime or a 
product if primes, we either have x > n is prime, or there 
exists a prime p, p > n in the prime factorization of x. ◻

Lecture 10! February 4,  2016

9



Theorem: There is no largest prime.

(Proof by contradiction.)

Suppose there is a largest prime. So we can write down all 
of the finitely many primes as: {p1, p2, . . . , p!}. 

Now let n = p1 ⇥ p2 ⇥ · · ·⇥ p! + 1 .

Observe that n must be larger the p! the largest prime. 
Therefore n is composite and is a product of primes. Let 
pk denote a prime factor of n. Thus we have 

pk ∣ n 

And since pk ∈ {p1, p2, . . . , p!} we also have 

pk ∣ (n-1)

We know that pk ∣ n and pk ∣ (n-1) implies that pk ∣ n - (n-1) 
or pk ∣ 1. But no integer divides 1 except 1, and 1 is not 
prime, so pk ∣ 1 is impossible, and raises a mathematical 
contradiction. This implies that our assumption that p! is 
the largest prime is false, and so we conclude that there is 
no largest prime. ◻
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