CISC-102
 Winter 2016
 Lecture 10

Prime Numbers

Definition: A positive integer $\mathrm{p}>1$ is called a prime number if its only divisors are $1,-1$, and $\mathrm{p},-\mathrm{p}$.

The first 10 prime numbers are:
$2,3,5,7,11,13,17,19,23,29, \ldots$
Definition: If an integer $\mathrm{c}>2$ is not prime, then it is composite. Every composite number c can be written as a product of two integers a, b such that $\mathrm{a}, \mathrm{b} \notin\{1,-1, \mathrm{c},-\mathrm{c}\}$.

Theorem: Every integer $n>1$ is either prime or can be written as a product of primes.

For example:
$12=2 \times 2 \times 3$.

17 is prime.
$90=2 \times 5 \times 3 \times 3$.
$143=11 \times 13$.
$147=3 \times 7 \times 7$.
$330=2 \times 5 \times 3 \times 11$.

Note: If factors are repeated we can use exponents.
$48=2^{4} \times 3$.

Theorem: Every integer $n>1$ is either prime or can be written as a product of primes.

Proof:

(1) Suppose there is an integer $\mathrm{k}>1$ that is the largest integer that is the product of primes. This then implies that the integer $\mathrm{k}+1$ is not prime or a product of primes.
(2) If $\mathrm{k}+1$ is not prime it must be composite and: $\mathrm{k}+1=\mathrm{ab}, \mathrm{a}, \mathrm{b} \in \mathbb{Z}, \mathrm{a}, \mathrm{b} \notin\{1,-1, \mathrm{k}+1,-(\mathrm{k}+1)\}$.
(3) Observe that $|a|<\mathrm{k}+1$ and $|b|<\mathrm{k}+1$, because a $\mid \mathrm{k}+1$ and $\mathrm{b} \mid \mathrm{k}+1$. We assume that $\mathrm{k}+1$ is the smallest positive integer that is not prime or the product of primes, therefore $|\mathrm{a}|$ and $|\mathrm{b}|$ are prime or a product of primes.
(4) Since $k+1$ is a product of a and b it follows that it too is a product of primes.
(5) Thus we have contradicted the assumption that there is a largest integer that is the product of primes, and we can therefore conclude that every integer $n>1$ is either prime or written as a product of primes.

Mathematical Induction ($\mathbf{2}^{\text {nd }} \mathbf{f o r m}$)

Let $\mathrm{P}(\mathrm{n})$ be a proposition defined on a subset of the Natural numbers ($\mathrm{b}, \mathrm{b}+1, \mathrm{~b}+2, \ldots$) such that:
i) $P(b)$ is true (Base)
ii) Assume $\mathrm{P}(\mathrm{j})$ is true for all $\mathrm{j}, \mathrm{b} \leq \mathrm{j} \leq \mathrm{k}$.
(Induction Hypothesis)
iii) Use Induction Hypothesis to show that $\mathrm{P}(\mathrm{k}+1)$ is true. (Induction Step)
NOTE: Go back to all of the proofs using mathematical induction that we have seen so far and replace the assumption:
(1) Assume $\mathrm{P}(\mathrm{k})$ is true for $\mathrm{k} \geq \mathrm{b}$. (b is the base case) with the following assumption:
(2) Assume $P(\mathrm{j})$ is true for all $\mathrm{j}, \mathrm{b} \leq \mathrm{j} \leq \mathrm{k}$.
and the rest of the proof can remain as is.
Assumption (2) above is stronger than assumption (1). Sometimes this form of induction is called strong induction. NOTE: A stronger assumption it makes it easier to prove the result.

Let $\mathrm{P}(\mathrm{n})$ be the proposition:
$\sum_{i=1}^{n} 2^{i}=2+2^{2}+\cdots+2^{n}=2^{n+1}-2$

Theorem: $\mathrm{P}(\mathrm{n})$ is true for all $n \in \mathbb{N}$.

Proof:

Base: $\mathrm{P}(1)$ is $2=2^{2}-2$ which is clearly true. Induction Hypothesis: $P(j)$ is true for $\mathrm{j}, 1 \leq \mathrm{j} \leq \mathrm{k}$. Induction Step:

$$
\begin{aligned}
\sum_{i=1}^{k+1} 2^{i} & =2^{k+1}-2+2^{k+1} \quad \text { (because } \mathrm{P}(\mathrm{k}) \text { is true) } \\
& =2\left(2^{k+1}\right)-2 \\
& =2^{k+2}-2
\end{aligned}
$$

Theorem: Every integer $n>1$ is either prime or can be written as a product of primes.

Proof: (Mathematical Induction of the $2^{\text {nd }}$ form) Let $P(n)$ be the proposition that all natural numbers $n \geq 2$ are either prime or the product of primes.

Base: $\mathrm{n}=2, \mathrm{P}(2)$ is true because 2 is prime.

Induction Hypothesis:

(1) Assume that $\mathrm{P}(\mathrm{j})$ is true, for all $\mathrm{j}, 2 \leq \mathrm{j} \leq \mathrm{k}$.

Induction Step: Consider the integer $\mathrm{k}+1$.
(2) Observe that if $\mathrm{k}+1$ is prime $\mathrm{P}(\mathrm{k}+1)$ is true, so consider the case where $\mathrm{k}+1$ is composite. That is: $\mathrm{k}+1=$ $\mathrm{ab}, \mathrm{a}, \mathrm{b} \in \mathbb{Z}, \mathrm{a}, \mathrm{b} \notin\{1,-1, \mathrm{k}+1,-(\mathrm{k}+1)\}$.
(3) Therefore, $|a|<\mathrm{k}+1$ and $|b|<\mathrm{k}+1$.

So $|a|$ and $|b|$ are prime or a product of primes.
(4) Since $k+1$ is a product of a and b it follows that it too is a product of primes.
(5) Therefore, by the 2 nd form of mathematical induction we can conclude that $\mathrm{P}(\mathrm{n})$ is true for all $\mathrm{n} \geq 2$. \square

Well-Ordering Principle

In our initial proof that shows that integers greater than 2 are either prime or a product of primes we assumed that if that wasn't true for all integers greater than 2, then there was a smallest integer where the proposition is false. (we called that integer k.) This statement may appear to be obvious, but there is a mathematical property of the positive integers at play that makes this true.

Theorem: Well Ordering Principle: Let S be a non-empty subset of the positive integers. Then S contains a least element, that is, S contains an element $\mathrm{a} \leq \mathrm{s}$ for all $\mathrm{s} \in \mathrm{S}$.

- Observe that S could be an infinite set.
- Well ordering does NOT apply to subsets of \mathbb{Z}, \mathbb{Q}, or \mathbb{R}. It is a special property of the positive integers.

NOTE: The Well Ordering Principle can be used to prove both forms of the Principle of Mathematical Induction.

In essence the statement "use the proposition $\mathrm{P}(\mathrm{k})$ to show that $\mathrm{P}(\mathrm{k}+1)$ is true" uses an underlying assumption:
"Should there be a value of n where the proposition is false then there must be a smallest value of n where the proposition is false"

In all of our induction proofs so far the value $k+1$ plays the role of that smallest value of n where the proposition may be false. For all other values $j, b \leq j \leq k$, we can assume that $P(j)$ is true. In the induction step we show that $\mathrm{P}(\mathrm{k}+1)$ is also true, in essence showing that there is no smallest value of n where the proposition is false. And by well ordering this implies that the result is true for all values of n.

Theorem: There exists a prime greater than n for all positive integers n. (We could also say that there are infinitely many primes.)

Proof: Consider $y=n!$ and $x=n!+1$. Let p be a prime divisor of x , such that $\mathrm{p} \leq \mathrm{n}$. This implies that p is also a divisor of y, because n ! is the product of all natural numbers from 1 to n. So we have $p \mid x$ and $p \mid y$. According to one of the divisibility theorems we have $\mathrm{p} \mid \mathrm{x}-\mathrm{y}$. But $\mathrm{x}-\mathrm{y}=1$ and the only divisor of 1 is -1 , or 1 , both not prime. So there are no prime divisors of x less than n. And since every integer is either prime or a product if primes, we either have $\mathrm{x}>\mathrm{n}$ is prime, or there exists a prime $\mathrm{p}, \mathrm{p}>\mathrm{n}$ in the prime factorization of x .

Theorem: There is no largest prime.
(Proof by contradiction.)
Suppose there is a largest prime. So we can write down all of the finitely many primes as: $\left\{p_{1}, p_{2}, \ldots, p_{\omega}\right\}$.

Now let $n=p_{1} \times p_{2} \times \cdots \times p_{\omega}+1$.

Observe that n must be larger the p_{ω} the largest prime. Therefore n is composite and is a product of primes. Let p_{k} denote a prime factor of n. Thus we have
$p_{k} \mid n$
And since $p_{k} \in\left\{p_{1}, p_{2}, \ldots, p_{\omega}\right\}$ we also have
$p_{k} \mid(n-1)$
We know that $p_{k} \mid n$ and $p_{k} \mid(n-1)$ implies that $p_{k} \mid \mathrm{n}-(n-1)$ or $p_{k} \mid 1$. But no integer divides 1 except 1 , and 1 is not prime, so $p_{k} \mid 1$ is impossible, and raises a mathematical contradiction. This implies that our assumption that p_{ω} is the largest prime is false, and so we conclude that there is no largest prime. \square

