
CISC-102
Winter 2016
Lecture 11

Greatest Common Divisor

Consider any two integers, a,b, at least one non-zero. If 
we list the positive divisors in numeric order from 
smallest to largest, we would get two lists:

a: (1, c1, c2, ... |a|)
b: (1, d1, d2, ... |b|)

Since both lists must contain the number 1, we see that 1 
is a common divisor of a and b. Since the greatest divisor 
of a is |a| and the greatest divisor of b is |b|, we can deduce 
that amongst the common divisors of a and b, there must 
be one that is the greatest.

Thus we can say that given two integers a,b, at least one 
not zero, there is a unique greatest common divisor of a 
and b.
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Computing the greatest common divisor of a non-zero 
integer a, and 0, is somewhat boring because all non-zero 
integers divide 0, so the greatest common divisor of a and 
0 is always |a|. So let’s just assume from now on that 
neither a nor b is 0.
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Example: 
Let a = 111, and b = 250. We can construct sorted lists of 
divisors of a and b yielding:

a: (1, 3, 37, 111)
b: (1, 2, 5, 10, 25, 50, 125, 250)

And by inspection we can deduce that 1 is the greatest 
common divisor of a and b. When the greatest common 
divisor of two numbers a,b is 1 we say that a and b are 
relatively prime or coprime.
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Another example:
Let a = 250, and b = 575. We can construct sorted lists of 
divisors of a and b yielding:

a: (1, 2, 5, 10, 25, 50, 125, 250)
b:(1, 5, 23, 25, 115, 575)

And by inspection we can deduce that 25 is the greatest 
common divisor of a and b. 

This method of obtaining all divisors of a and b is very 
computationally intensive, and would make some 
essential steps of public key encryption schemes un-
feasible. Remarkably an algorithm invented by Euclid 
(~ 300 BC) finds greatest common divisors in a much 
more efficient way.
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Euclid’s Algorithm
Suppose a,b are non-zero integers then we can define a 
function on the integers,  gcd(a,b),  that returns the 
greatest common divisor of a and b. It will be convenient 
to further assume that |a| ≥ |b|. 

Euclid’s algorithm to compute gcd(a,b) is way more 
efficient than computing all the divisors a and b. The 
algorithm  is based on the following theorem.

Euclid’s Theorem:
Let a,b,q,r be integers such that a = qb + r  then 

   gcd (a,b) = gcd(b,r)
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For example: a = 575, b = 250. 
( Note: We already know that gcd(575,250) = 25) 

575 = (2)(250) + 75  (Use long division to get q & r)

So the claim is that gcd(575, 250) = gcd(250,75).

Since we already know that gcd(575,250) = 25 this can be 
verified by listing the divisors of 250 and 75.

250: (1, 2, 5, 10, 25, 50, 125, 250)
75: (1, 3, 5, 15, 25, 75)
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We can now “iterate” this process by  renaming a = 250, b 
= 75 and repeat the previous calculation. That is:

250 = (3)(75) + 25  (Use long division to get q & r)

We can again verify that gcd(250,75) = gcd(75,25) by 
listing the divisors of 75 and 25. 

75: (1, 3, 5, 15, 25, 75)
25: (1, 5, 25)

Let’s repeat this again, so a = 75 and b = 25

75 = (3)(25) + 0

so we have gcd(75,25) = gcd(25,0), and we have already 
seen that the greatest common divisor of any non-zero 
integer a and 0 is |a|. 

Therefore by Euclid’s algorithm we have 
gcd(575,250) = 25.
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Euclid’s Algorithm in the Python programming language.

def euclid_gcd(a,b):

# Assume |a| >= |b| > 0

    r = a % b # this returns r s.t. a = bq + r

    while r > 0:

        a,b = b,r 

        r = a % b # this returns r s.t. a = bq + r 

    return b

NOTE: The % (mod) operator is found in many 

programming languages and returns the remainder when 

doing integer division.
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Observe that as a side effect of Euclid’s algorithm we can 
always find integers x,y such that gcd(a,b) = ax + by.

This can be illustrated with the previous example.

(1) 575  = (2) 250 + 75 implies 75 = 575 - (2)250
(2) 250  = (3) 75  +  25 implies 25 = 250 - (3)75
(3)   75  = (3) 25  +   0

Now we can write gcd(575,250) = 25 as: 

25 = 250 - (3)75                      (Using (2) above)
25 = 250 - (3)[575 - (2)250]   (Using (1) above)
25 = (7)250 - (3)575               (Simplify)
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To prove Euclid’s Theorem we will need a preliminary 
result. Math convention uses the word “lemma” for  
preliminary results that are proved in preparation for the 
proof of the main theorem.

Lemma: Let g,a,b be non-zero integers. If g | a and  g | b 
then g | (pa + b) for all integers p.

Proof: Since  g | a and g | b we can write 

( 1 ) a = cg and b  = dg, where c,d are integers.

Replacing the values of a and b in  g | (pa + b) 
using equation ( 1 ) we get:

                    g | (pcg + dg) 

which simplifies to:

  g | g(pc + d)

Now it should be clear that g divides g(pc+d) and thus we 
conclude that g divides pa + b.                                       ⧠
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Theorem: Let a,b,q,r be integers such that:
 a = qb + r, 0 ≤ r < |b|,  then gcd (a,b) = gcd(b,r).

Proof: 
( 0 ) Let g1= gcd(a,b) and g2 = gcd(b,r). 

( 1 ) Observe that g2 | b and g2 | r, so g2 | pb + r for all 
integers p, and in particular for q, where a = qb + r. 

 ( a ) Therefore, g2 | a, and we have established that 
  g2 is a common divisor of both a and b. 

 ( b) Furthermore, observe that g2  ≤  g1 = gcd(a,b) 

( 2 ) Using the equation a = qb + r we can write 
        r = - qb + a. 
        g1 | b and g1 | a so use the lemma (with p = -q)  
       to get g1 | -qb + a or g1 | r. 

 ( a ) Therefor g1 | r and we have established that g1 is 
  a common divisor of b and r. 
  
        ( b ) Furthermore, observe that  g1 ≤  g2 = gcd(b,r).

( 3 ) g2 ≤ g1 and g1 ≤ g2 implies that g1 = g2, so we can   
        conclude that  gcd(a,b) = gcd(b,r).                      ⧠
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Euclid’s Algorithm in the Python programming language.

def euclid_gcd(a,b):

# Assume |a| >= |b| > 0

    r = a % b # this returns r s.t. a = bq + r

    while r > 0:

        a,b = b,r 

        r = a % b # this returns r s.t. a = bq + r 

    return b

NOTE: The % (mod) operator is found in many 

programming languages and returns the remainder when 

doing integer division.
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We will argue that euclid_gcd(a,b) finds  gcd(a,b) 
assuming that a ≥ b > 0. 

We first argue that the loop terminates, that is r eventually 
becomes 0. This is easy to see because the remainder 
when we divide a by b is less than b. The value of r begins  
positive and always decreases so it eventually must  be 
zero.

The correctness follows from Euclid’s theorem.

It can also be shown that this function is extremely 
efficient when compared to looking at all the divisors of a 
and b. 
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