
CISC-102
Winter 2016
Lecture 11

Greatest Common Divisor

Consider any two integers, a,b, at least one non-zero. If
we list the positive divisors in numeric order from
smallest to largest, we would get two lists:

a: (1, c1, c2, ... |a|)
b: (1, d1, d2, ... |b|)

Since both lists must contain the number 1, we see that 1
is a common divisor of a and b. Since the greatest divisor
of a is |a| and the greatest divisor of b is |b|, we can deduce
that amongst the common divisors of a and b, there must
be one that is the greatest.

Thus we can say that given two integers a,b, at least one
not zero, there is a unique greatest common divisor of a
and b.

Lecture 11! February 11, 2016

1

Computing the greatest common divisor of a non-zero
integer a, and 0, is somewhat boring because all non-zero
integers divide 0, so the greatest common divisor of a and
0 is always |a|. So let’s just assume from now on that
neither a nor b is 0.

Lecture 11! February 11, 2016

2

Example:
Let a = 111, and b = 250. We can construct sorted lists of
divisors of a and b yielding:

a: (1, 3, 37, 111)
b: (1, 2, 5, 10, 25, 50, 125, 250)

And by inspection we can deduce that 1 is the greatest
common divisor of a and b. When the greatest common
divisor of two numbers a,b is 1 we say that a and b are
relatively prime or coprime.

Lecture 11! February 11, 2016

3

Another example:
Let a = 250, and b = 575. We can construct sorted lists of
divisors of a and b yielding:

a: (1, 2, 5, 10, 25, 50, 125, 250)
b:(1, 5, 23, 25, 115, 575)

And by inspection we can deduce that 25 is the greatest
common divisor of a and b.

This method of obtaining all divisors of a and b is very
computationally intensive, and would make some
essential steps of public key encryption schemes un-
feasible. Remarkably an algorithm invented by Euclid
(~ 300 BC) finds greatest common divisors in a much
more efficient way.

Lecture 11! February 11, 2016

4

Euclid’s Algorithm
Suppose a,b are non-zero integers then we can define a
function on the integers, gcd(a,b), that returns the
greatest common divisor of a and b. It will be convenient
to further assume that |a| ≥ |b|.

Euclid’s algorithm to compute gcd(a,b) is way more
efficient than computing all the divisors a and b. The
algorithm is based on the following theorem.

Euclid’s Theorem:
Let a,b,q,r be integers such that a = qb + r then

 gcd (a,b) = gcd(b,r)

Lecture 11! February 11, 2016

5

For example: a = 575, b = 250.
(Note: We already know that gcd(575,250) = 25)

575 = (2)(250) + 75 (Use long division to get q & r)

So the claim is that gcd(575, 250) = gcd(250,75).

Since we already know that gcd(575,250) = 25 this can be
verified by listing the divisors of 250 and 75.

250: (1, 2, 5, 10, 25, 50, 125, 250)
75: (1, 3, 5, 15, 25, 75)

Lecture 11! February 11, 2016

6

We can now “iterate” this process by renaming a = 250, b
= 75 and repeat the previous calculation. That is:

250 = (3)(75) + 25 (Use long division to get q & r)

We can again verify that gcd(250,75) = gcd(75,25) by
listing the divisors of 75 and 25.

75: (1, 3, 5, 15, 25, 75)
25: (1, 5, 25)

Let’s repeat this again, so a = 75 and b = 25

75 = (3)(25) + 0

so we have gcd(75,25) = gcd(25,0), and we have already
seen that the greatest common divisor of any non-zero
integer a and 0 is |a|.

Therefore by Euclid’s algorithm we have
gcd(575,250) = 25.

Lecture 11! February 11, 2016

7

Euclid’s Algorithm in the Python programming language.

def euclid_gcd(a,b):

Assume |a| >= |b| > 0

 r = a % b # this returns r s.t. a = bq + r

 while r > 0:

 a,b = b,r

 r = a % b # this returns r s.t. a = bq + r

 return b

NOTE: The % (mod) operator is found in many

programming languages and returns the remainder when

doing integer division.

Lecture 11! February 11, 2016

8

Observe that as a side effect of Euclid’s algorithm we can
always find integers x,y such that gcd(a,b) = ax + by.

This can be illustrated with the previous example.

(1) 575 = (2) 250 + 75 implies 75 = 575 - (2)250
(2) 250 = (3) 75 + 25 implies 25 = 250 - (3)75
(3) 75 = (3) 25 + 0

Now we can write gcd(575,250) = 25 as:

25 = 250 - (3)75 (Using (2) above)
25 = 250 - (3)[575 - (2)250] (Using (1) above)
25 = (7)250 - (3)575 (Simplify)

Lecture 11! February 11, 2016

9

To prove Euclid’s Theorem we will need a preliminary
result. Math convention uses the word “lemma” for
preliminary results that are proved in preparation for the
proof of the main theorem.

Lemma: Let g,a,b be non-zero integers. If g | a and g | b
then g | (pa + b) for all integers p.

Proof: Since g | a and g | b we can write

(1) a = cg and b = dg, where c,d are integers.

Replacing the values of a and b in g | (pa + b)
using equation (1) we get:

 g | (pcg + dg)

which simplifies to:

 g | g(pc + d)

Now it should be clear that g divides g(pc+d) and thus we
conclude that g divides pa + b. ⧠

Lecture 11! February 11, 2016

10

Theorem: Let a,b,q,r be integers such that:
 a = qb + r, 0 ≤ r < |b|, then gcd (a,b) = gcd(b,r).

Proof:
(0) Let g1= gcd(a,b) and g2 = gcd(b,r).

(1) Observe that g2 | b and g2 | r, so g2 | pb + r for all
integers p, and in particular for q, where a = qb + r.

 (a) Therefore, g2 | a, and we have established that
 g2 is a common divisor of both a and b.

 (b) Furthermore, observe that g2 ≤ g1 = gcd(a,b)

(2) Using the equation a = qb + r we can write
 r = - qb + a.
 g1 | b and g1 | a so use the lemma (with p = -q)
 to get g1 | -qb + a or g1 | r.

 (a) Therefor g1 | r and we have established that g1 is
 a common divisor of b and r.

 (b) Furthermore, observe that g1 ≤ g2 = gcd(b,r).

(3) g2 ≤ g1 and g1 ≤ g2 implies that g1 = g2, so we can
 conclude that gcd(a,b) = gcd(b,r). ⧠

Lecture 11! February 11, 2016

11

Euclid’s Algorithm in the Python programming language.

def euclid_gcd(a,b):

Assume |a| >= |b| > 0

 r = a % b # this returns r s.t. a = bq + r

 while r > 0:

 a,b = b,r

 r = a % b # this returns r s.t. a = bq + r

 return b

NOTE: The % (mod) operator is found in many

programming languages and returns the remainder when

doing integer division.

Lecture 11! February 11, 2016

12

We will argue that euclid_gcd(a,b) finds gcd(a,b)
assuming that a ≥ b > 0.

We first argue that the loop terminates, that is r eventually
becomes 0. This is easy to see because the remainder
when we divide a by b is less than b. The value of r begins
positive and always decreases so it eventually must be
zero.

The correctness follows from Euclid’s theorem.

It can also be shown that this function is extremely
efficient when compared to looking at all the divisors of a
and b.

Lecture 11! February 11, 2016

13

