
CISC-102
Winter 2016
Lecture 12

Euclid’s Algorithm
Suppose a,b are non-zero integers then we can define a
function on the integers, gcd(a,b), that returns the
greatest common divisor of a and b. It will be convenient
to further assume that |a| ≥ |b|.

Euclid’s algorithm to compute gcd(a,b) is way more
efficient than computing all the divisors a and b. The
algorithm is based on the following theorem.

Euclid’s Theorem:
Let a,b,q,r be integers such that a = qb + r then

 gcd (a,b) = gcd(b,r)

This translates to the following iterative algorithm,
implemented in Python.

Lecture 12! February 23, 2016

1

Euclid’s Algorithm in the Python programming language.

def euclid_gcd(a,b):

Assume |a| >= |b| > 0

 r = a % b # this returns r s.t. a = bq + r

 while r > 0:

 a,b = b,r

 r = a % b # this returns r s.t. a = bq + r

 return b

NOTE: The % (mod) operator is found in many

programming languages and returns the remainder when

doing integer division.

Lecture 12! February 23, 2016

2

For example: a = 154, b = 18.

so
iteration 0: (before the while loop) r = 154 % 18 = 10
iteration 1: r = 18 % 10 = 8
iteration 2: r = 10 % 8 = 2
iteration 3: r = 8 % 2 = 0

concluding that gcd(154,18) = 2

or
gcd(154,18) = gcd(18,10) = gcd(10,8) = gcd(8,2) = gcd(2,0) = 2.

Observe that as a side effect of Euclid’s algorithm we can
always find integers x,y such that gcd(a,b) = ax + by.

This can be illustrated with the previous example.

(1) 154 = (8) 18 + 10 implies 10 = 154 - (8)18
(2) 18 = (1) 10 + 8 implies 8 = 18 - (1)10
(3) 10 = (1) 8 + 2 implies 2 = 10 - (1)8

Now we can write gcd(154,18) = 2 as:

2 = 10 - (1)8 equation (3)
2 = 10 - (1)[18 - (1)10] equation (2)
2 = 154 - (8)18 - (1)[18 - (1)(154-(8)18)] equation (1)
2 = (2)154 - (17)18

Lecture 12! February 23, 2016

3

The proof of Euclid’s Theorem appears in lecture 11.

It can also be shown that this function is extremely
efficient when compared to looking at all the divisors of a
and b.

Lecture 12! February 23, 2016

4

Let a = 250, and b = 575. We can construct a prime
factorization of a and b.

Prime factorization:
250 = (2)(53)
575 = (52)(23)

We can inspect the prime factorization of a and b to obtain
a greatest common divisor.

Observe that 52 is the greatest number that divides both a
and b, that is, gcd(a,b). Using the prime factorizations of
a and b is much less efficient than Euclid’s algorithm.
Nevertheless, the prime factorization is useful for
obtaining other properties of the greatest common divisor.

Lecture 12! February 23, 2016

5

Least Common Multiple

Given two non-zero1 integers a,b we can have many
values that are positive common multiples of both a & b.
By the well ordering principle we know that amongst all
of those multiples there is one that is smallest, and this is
known as the least common multiple of a and b. We can
define a function lcm(a,b) that returns this value.

Example: Suppose a = 12, and b = 24,
so we have lcm(a,b) = 24.
In general if a | b then lcm(a,b) = |b|.
At this point it is worth mentioning that if a | b then
gcd(a,b) = |a|, and that lcm(a,b) × gcd(a,b) = |ab|.

Lecture 12! February 23, 2016

6

1 Multiples of zero are always zero, so this is a boring case.

Example: Suppose a = 13, and b = 24, we have
lcm(a,b) = (13)(24). We can also observe that
gcd(a,b) = 1, that is the numbers are relatively prime.
In general if a and b are relatively prime, that is, if
gcd(a,b) = 1 then lcm(a,b) = |ab|

So when gcd(a,b) = 1, we can observe that
lcm(a,b) × gcd(a,b) = |ab|.

Lecture 12! February 23, 2016

7

Let a = 250, and b = 575. We can construct a prime
factorization of a and b

Prime factorization
250 = (2)(53)
575 = (52)(23)

We can inspect the prime factorization of a and b to obtain
the least common multiple and the greatest common
divisor using the formulae:

gcd(575,250) = 2min(1,0) × 5min(3,2) × 23min(0,1) = 52

and

lcm(575,250) = 2max(1,0) × 5max(3,2) × 23max(0,1)

 = 21 × 53 × 231

So in this case we also have lcm(a,b) × gcd(a,b) = |ab|

Lecture 12! February 23, 2016

8

630 = (2) (32) (5) (7)
84 = (22) (3) (7)

Using the formulae we get:

gcd(630,84) = 2min(1,2) × 3min(2,1) × 5min(1,0) × 7min(1,1)

 = 2 × 3 × 7

and

lcm(630,84) = 2max(1,2) × 3max(2,1) × 5max(1,0) × 7max(1,1)
 = 22 × 32 × 5 × 7

Again we have

 630 × 84 = (2) (32) (5) (7) × (22) (3) (7)
 = (2) (3) (7) × (22) (32) (5) (7)
 = gcd(630,84) × lcm(630,84)

Lecture 12! February 23, 2016

9

These ideas lead to the following theorem that is given
without formal proof.

Theorem: Let a,b be non-zero integers, then

 gcd(a,b)lcm(a,b) = |ab|.

Lecture 12! February 23, 2016

10

Factoring vs. GCD

Factoring an integer N into its prime factors will use
roughly

p
N operations.

Computing gcd(N,m) with Euclid’s algorithm for
N > m ≥ 0 will use roughly log2 N operations.

N
log2 N

p
N

1024 10 32

1099511627776 40 1,048,576

1⇥ 10301 1000 3.27⇥ 10150

The efficiency of Euclid’s gcd algorithm is essential for
implementing current public key crypto systems that are
commonly used for e-commerce applications.

With a “key” decoding an encrypted message using
Euclid’s algorithm takes about 1000 operations. Without a
“key” breaking an encrypted message takes about
3.27⇥ 10150 operations. This amounts to a small fraction
of a second for decoding and many millions of years for
breaking the encrypted message.

Lecture 12! February 23, 2016

11

Congruence Relations

 Let a,b,m be integers, m > 0, such that

a % m = b % m that is:

a = (p)m + r and b = (q)m + r

for example: let a = 7, b = 19, m = 12

7 = (0)12 + 7

19 = (1)12 + 7

a % m = 7 = b % m

We say that a is congruent to b modulo m written as:

a ≡ b (mod m)

Lecture 12! February 23, 2016

12

Integers modulo 4.

Lecture 12! February 23, 2016

13

Definition:
a ≡ b (mod m) if a % m = b % m.

An equivalent definition is:

Definition:
a ≡ b (mod m) if m | (a-b).

Lecture 12! February 23, 2016

14

To show that the two definitions are equivalent we need to
show that:

 if a % m = b % m then m | (a-b)
and
 if m | (a-b) then a % m = b % m

Lecture 12! February 23, 2016

15

if a % m = b % m then m | (a-b)

Say a % m = b % m = r. Then we can write:

 a = pm + r and b = qm + r

where p and q are integers.

we have:

(1) (a-b) = pm + r - qm - r = m(p-q)

and equation (1) implies (a-b) = m(p-q) so m | (a-b).

On the other hand:

Lecture 12! February 23, 2016

16

if m | (a-b) then a % m = b % m

The proof of this proposition is a bit involved so I will
omit it.

Lecture 12! February 23, 2016

17

Example: Let m = 12. Then we have:

13 ≡ 1 (mod 12)

17 ≡ 5 (mod 12)

Which is familiar to everyone who uses a 24 hour clock.

And we can also have:

241 ≡ 1 (mod 12)

166 ≡ 10 (mod 12)

120 ≡ 0 (mod 12)

Similarly

90 ≡ 30 (mod 60)

75 ≡ 15 (mod 60)

120 ≡ 0 (mod 60)

Lecture 12! February 23, 2016

18

We now show that congruence is an equivalence relation.

Theorem: Let m be a positive integer then

1. For any integer a we have a ≡ a (mod m) (reflexive)
2. if a ≡ b (mod m) then b ≡ a (mod m) (symmetric)
3. if a ≡ b (mod m) and b ≡ c (mod m)

then a ≡ c (mod m) (transitive)

I will prove 3.

Lecture 12! February 23, 2016

19

Theorem: if a ≡ b (mod m) and b ≡ c (mod m)
then a ≡ c (mod m).

Proof:if a ≡ b (mod m) then m | (a-b),
and if b ≡ c (mod m) then m | (b-c).

And by one of the divisibility theorems we have:

m | (a-b+b-c) or, m | (a-c) so a ≡ c (mod m). ◻

Lecture 12! February 23, 2016

20

