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Lecture 12

Euclid’s Algorithm
Suppose a,b are non-zero integers then we can define a 
function on the integers,  gcd(a,b),  that returns the 
greatest common divisor of a and b. It will be convenient 
to further assume that |a| ≥ |b|. 

Euclid’s algorithm to compute gcd(a,b) is way more 
efficient than computing all the divisors a and b. The 
algorithm  is based on the following theorem.

Euclid’s Theorem:
Let a,b,q,r be integers such that a = qb + r  then 

   gcd (a,b) = gcd(b,r)

This translates to the following iterative algorithm, 
implemented in Python. 
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Euclid’s Algorithm in the Python programming language.

def euclid_gcd(a,b):

# Assume |a| >= |b| > 0

    r = a % b # this returns r s.t. a = bq + r

    while r > 0:

        a,b = b,r 

        r = a % b # this returns r s.t. a = bq + r 

    return b

NOTE: The % (mod) operator is found in many 

programming languages and returns the remainder when 

doing integer division.
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For example: a = 154, b = 18. 

so 
iteration 0: (before the while loop)  r = 154 % 18 = 10
iteration 1: r = 18 % 10 = 8
iteration 2: r = 10 % 8 = 2
iteration 3: r = 8 % 2 = 0

concluding that gcd(154,18) = 2

or 
gcd(154,18) = gcd(18,10) = gcd(10,8) = gcd(8,2) = gcd(2,0) = 2.

Observe that as a side effect of Euclid’s algorithm we can 
always find integers x,y such that gcd(a,b) = ax + by.

This can be illustrated with the previous example.

(1) 154  = (8) 18 + 10  implies 10 = 154 - (8)18
(2) 18  = (1) 10  +  8 implies 8 = 18 - (1)10
(3) 10  = (1) 8  +   2 implies 2 = 10 - (1)8

Now we can write gcd(154,18) = 2 as: 

2 = 10 - (1)8                                               equation  (3) 
2 = 10 - (1)[18 - (1)10]                               equation (2)
2 = 154 - (8)18 - (1)[18 - (1)(154-(8)18)]  equation (1)          
2 = (2)154 - (17)18

Lecture 12! February 23,  2016

3



The proof of Euclid’s Theorem appears in lecture 11. 

It can also be shown that this function is extremely 
efficient when compared to looking at all the divisors of a 
and b. 
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Let a = 250, and b = 575. We can construct a prime 
factorization of a and b.

Prime factorization:
250 = (2)(53)
575 = (52)(23)

We can inspect the prime factorization of a and b to obtain 
a greatest common divisor. 

Observe that 52 is the greatest number that divides both a 
and b, that is,  gcd(a,b). Using the prime factorizations of 
a and b is much less efficient than Euclid’s algorithm.
Nevertheless, the prime factorization is useful for 
obtaining other properties of the greatest common divisor.
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Least Common Multiple

Given two non-zero1 integers a,b we can have many 
values that are  positive common multiples of both a & b. 
By the well ordering principle we know that amongst all 
of those multiples there is one that is smallest, and this is 
known as the  least common multiple of a and b. We can 
define a function lcm(a,b) that returns this value.

Example: Suppose a = 12, and b = 24, 
so we have lcm(a,b) = 24. 
In general if a | b then lcm(a,b) = |b|. 
At this point it is worth mentioning that if a | b then 
gcd(a,b) = |a|, and that lcm(a,b) × gcd(a,b) = |ab|.
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Example: Suppose a = 13, and b = 24, we have 
lcm(a,b) = (13)(24). We can also observe that 
gcd(a,b) = 1, that is the numbers are relatively prime. 
In general if a and b are relatively prime, that is, if 
gcd(a,b) = 1 then lcm(a,b) = |ab|

So when gcd(a,b) = 1, we can observe that 
lcm(a,b) × gcd(a,b) = |ab|. 
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Let a = 250, and b = 575. We can construct a prime 
factorization of a and b

Prime factorization
250 = (2)(53)
575 = (52)(23)

We can inspect the prime factorization of a and b to obtain 
the least common multiple and the greatest common 
divisor using the formulae:

gcd(575,250) = 2min(1,0) × 5min(3,2) × 23min(0,1) =  52

and

lcm(575,250) = 2max(1,0) × 5max(3,2) × 23max(0,1) 

                                  = 21 × 53 × 231

So in this case we also have lcm(a,b) × gcd(a,b) = |ab|
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630 = ( 2 ) (32) ( 5 ) ( 7 )
84  =  (22) ( 3 ) ( 7 )

Using the formulae we get:
 
gcd(630,84) = 2min(1,2) × 3min(2,1) × 5min(1,0) × 7min(1,1) 

                              =  2 × 3  × 7 

and 

lcm(630,84)  = 2max(1,2) × 3max(2,1) × 5max(1,0) × 7max(1,1) 
                     =  22 × 32 × 5 × 7

Again we have 

 630 × 84  = ( 2 ) (32) ( 5 ) ( 7 ) × (22) ( 3 ) ( 7 ) 
                 = ( 2 ) ( 3 ) ( 7 ) × (22) (32) ( 5 ) ( 7 )
                 = gcd(630,84) × lcm(630,84)
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These ideas lead to the following theorem that is given 
without formal proof.

Theorem: Let a,b be non-zero integers, then 

                        gcd(a,b)lcm(a,b) = |ab|.
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Factoring vs. GCD 

Factoring an integer N into its prime factors will use  
roughly 

p
N  operations.

Computing gcd(N,m) with Euclid’s algorithm for 
N > m ≥ 0 will use roughly log2 N  operations.

N
log2 N

p
N

1024 10 32

1099511627776 40 1,048,576

1⇥ 10301 1000 3.27⇥ 10150

The efficiency of Euclid’s gcd algorithm is essential for 
implementing current public key crypto systems that are 
commonly used for e-commerce applications. 

With a “key” decoding an encrypted message using 
Euclid’s algorithm takes about 1000 operations. Without a 
“key” breaking an encrypted message takes about 
3.27⇥ 10150 operations. This amounts to a small fraction 
of a second for decoding and many millions of years for 
breaking the encrypted message. 
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Congruence Relations

 Let a,b,m be integers, m > 0,  such that 

a % m = b % m  that is:

a = (p)m + r and b = (q)m + r  

for example: let a = 7, b = 19, m = 12

7 = (0)12 + 7

19 = (1)12 + 7

a % m = 7 = b % m

We say that a is congruent to b modulo m written as:

a ≡ b (mod m) 
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Integers modulo 4.
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Definition: 
a ≡ b (mod m) if a % m = b % m.

An equivalent definition is:

Definition:
a ≡ b (mod m) if  m | (a-b).
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To show that the two definitions are equivalent we need to 
show that:

   if a % m = b % m then m | (a-b)
and
   if m | (a-b) then a % m = b % m
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if a % m = b % m then m | (a-b)

Say a % m = b % m  = r. Then we can write:  

   a = pm + r and b = qm + r 

where p and q are integers.

we have: 

(1) (a-b) = pm + r - qm - r = m(p-q) 

and equation (1) implies  (a-b) = m(p-q) so m | (a-b).

On the other hand:
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if m | (a-b) then a % m = b % m

The proof of this proposition is a bit involved so I will 
omit it.
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Example: Let m = 12. Then we have:

13 ≡ 1 (mod 12)

17 ≡ 5 (mod 12)

Which is familiar to everyone who uses a 24 hour clock.

And we can also have:

241 ≡ 1 (mod 12)

166 ≡ 10 (mod 12)

120 ≡ 0 (mod 12)

Similarly 

90 ≡ 30 (mod 60)

75 ≡ 15 (mod 60)

120 ≡ 0 (mod 60)
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We now show that congruence is an equivalence relation.

Theorem: Let m be a positive integer then

1. For any integer a we have a ≡ a (mod m) (reflexive)
2. if a ≡ b (mod m) then b ≡ a (mod m) (symmetric)
3. if a ≡ b (mod m) and b ≡ c (mod m) 

then a ≡ c (mod m) (transitive)

I will prove 3.
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Theorem: if a ≡ b (mod m) and b ≡ c (mod m) 
then a ≡ c (mod m).

Proof:if a ≡ b (mod m) then m | (a-b), 
and if b ≡ c (mod m) then m | (b-c).

And by one of the divisibility theorems we have:

m | (a-b+b-c)  or, m | (a-c) so a ≡ c (mod m). ◻
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