Lecture 12 February 23, 2016

CISC-102

Euclid’s Algorithm

Suppose a,b are non-zero integers then we can define a
function on the integers, gcd(a,b), that returns the
greatest common divisor of a and b. It will be convenient
to further assume that |a| > |b|.

Euclid’s algorithm to compute gcd(a,b) is way more
efficient than computing all the divisors a and b. The
algorithm 1s based on the following theorem.

Euclid’s Theorem:
Let a,b,q,r be integers such that a=gb + r then

gcd (a,b) = ged(b,r)

This translates to the following iterative algorithm,
implemented in Python.
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Euclid’s Algorithm in the Python programming language.
euclid gcd(a,b):
# Assume |a] >= |b| > 0
r=a%b#thisreturnsrs.t.a=bq+r
r>0:
a,b=>br
r=a%b#thisreturnsrs.t.a=bq+r

b

NOTE: The % (mod) operator is found in many
programming languages and returns the remainder when

doing integer division.
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For example: a =154, b = 18.

SO

iteration 0: (before the while loop) r=154 % 18 =10
iteration 1: r=18 % 10 =28

iteration 2: r=10% 8 =2

iteration 3: r=8 % 2 =10

concluding that gcd(154,18) =2

or
gcd(154,18) = gcd(18,10) = ged(10,8) = ged(8,2) = gcd(2,0) = 2.

Observe that as a side effect of Euclid’s algorithm we can
always find integers x,y such that gcd(a,b) = ax + by.

This can be illustrated with the previous example.

(1) 154 =(8) 18 + 10 implies 10 =154 - (8)18
(2) 18 =(1) 10 + 8 implies 8 =18 - (1)10
(3)10 =(1)8 + 2 implies2=10-(1)8

Now we can write gcd(154,18) = 2 as:

2=10-(1)8 equation (3)
2=10-(D[18-(1)10] equation (2)
2=154-(8)18 - (D[18 - (1)(154-(8)18)] equation (1)
2=(2)154-(17)18
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The proof of Euclid’s Theorem appears in lecture 11.

It can also be shown that this function is extremely

efficient when compared to looking at all the divisors of a
and b.
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Let a =250, and b =575. We can construct a prime
factorization of a and b.

Prime factorization:
250 = (2)(5%)
575 =(5%)(23)

We can inspect the prime factorization of a and b to obtain
a greatest common divisor.

Observe that 52 is the greatest number that divides both a
and b, that is, gcd(a,b). Using the prime factorizations of
a and b is much less efficient than Euclid’s algorithm.
Nevertheless, the prime factorization 1s useful for
obtaining other properties of the greatest common divisor.
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Least Common Multiple

Given two non-zero! integers a,b we can have many
values that are positive common multiples of both a & b.
By the well ordering principle we know that amongst all
of those multiples there is one that is smallest, and this is
known as the [east common multiple of a and b. We can
define a function Icm(a,b) that returns this value.

Example: Suppose a= 12, and b = 24,

so we have lcm(a,b) = 24.

In general if a | b then lecm(a,b) = |b].

At this point it 1s worth mentioning that if a | b then
gcd(a,b) = |a|, and that lcm(a,b) x gcd(a,b) = |ab.

T Multiples of zero are always zero, so this is a boring case.
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Example: Suppose a =13, and b = 24, we have
lecm(a,b) = (13)(24). We can also observe that
gcd(a,b) = 1, that is the numbers are relatively prime.

In general if a and b are relatively prime, that 1s, 1f
gcd(a,b) = 1 then Icm(a,b) = |ab|

So when gcd(a,b) = 1, we can observe that
lecm(a,b) x gcd(a,b) = |ab.
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Let a =250, and b =575. We can construct a prime
factorization of a and b

Prime factorization
250 = (2)(5%)
575 =(5%)(23)

We can inspect the prime factorization of a and b to obtain
the least common multiple and the greatest common
divisor using the formulae:

ng(575,250) = 2 min(1,0) x 5min(3,2) % 23min(0,l): 52
and

101’1’1(575,250) = Jmax(1,0) x §max(3,2) x 933max(0,1)
=21 x §3x 231

So 1n this case we also have Icm(a,b) % gcd(a,b) = |ab|
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630=(2)(3*)(5)(7)
84 = (29 (3)(7)

Using the formulae we get:

gcd(630,84) = 2min(1.2) x 3min(2,1) x 5min(1,0) x 7min(1.1)
=2%xX3 X7
and

lem(630,84) = 2max(1.2) x 3max(21) x §max(10) x 7max(1.1)
— 22 X 32 X 5 X 7

Again we have

630 x84 =(2)(3%) (5)(7)*(2)(3)(7)

=(2)(3)(7)*x2HBH(5)(7)
= 0¢d(630,84) x 1cm(630,84)
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These 1deas lead to the following theorem that is given
without formal proof.

Theorem: Let a,b be non-zero integers, then

gcd(a,b)lem(a,b) = |ab|.
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Factoring vs. GCD

Factoring an integer N 1nto its prime factors will use
roughly v/ N operations.

Computing gcd(N,m) with Euclid’s algorithm for
N >m > 0 will use roughly log, /N operations.

N logy, N VN
1024 10 32
1099511627776 40 1,048,576
1 x 10301 1000 3.27 x 101%0

The efficiency of Euclid’s gcd algorithm is essential for
implementing current public key crypto systems that are
commonly used for e-commerce applications.

With a “key” decoding an encrypted message using
Euclid’s algorithm takes about 1000 operations. Without a
“key” breaking an encrypted message takes about

3.27 x 10159 operations. This amounts to a small fraction
of a second for decoding and many millions of years for
breaking the encrypted message.
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Congruence Relations

Let a,b,m be integers, m > 0, such that

a% m=>b % m that is:
a=(pm-+randb=(qm+r

for example: leta=7,b=19, m=12

7=00)12+7

19=(D)12+7

a%m=7=b%m

We say that a is congruent to b modulo m written as:

a=Db (mod m)
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Integers modulo 4.
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Definition:

a=b(modm)ifa% m=>b % m.

An equivalent definition is:

Definition:
a=Db (mod m) if m | (a-b).
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To show that the two definitions are equivalent we need to
show that:

if a % m =b % m then m | (a-b)

and
if m|(a-b)thena% m=>b % m
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if a % m =b % m then m | (a-b)

Say a % m =b % m =r. Then we can write:
a=pm+randb=qm-+r

where p and q are integers.

we have:

(1) (a-b) =pm +r - qm - r = m(p-q)

and equation (1) implies (a-b) = m(p-q) so m | (a-b).

On the other hand:
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ifm|(a-b) thena% m=>b % m

The proof of this proposition is a bit involved so I will
omit it.
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Example: Let m = 12. Then we have:
13 =1 (mod 12)

17=35 (mod 12)

Which is familiar to everyone who uses a 24 hour clock.
And we can also have:

241 =1 (mod 12)

166 =10 (mod 12)

120 =0 (mod 12)

Similarly

90 = 30 (mod 60)

75 =15 (mod 60)

120 = 0 (mod 60)
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We now show that congruence is an equivalence relation.
Theorem: Let m be a positive integer then

1. For any integer a we have a = a (mod m) (reflexive)
2.1fa=b (mod m) then b = a (mod m) (symmetric)
3.ifa=Db (mod m) and b = ¢ (mod m)

then a = ¢ (mod m) (transitive)

I will prove 3.
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Theorem: if a=b (mod m) and b = ¢ (mod m)
then a = ¢ (mod m).

Proof:if a=b (mod m) then m | (a-b),
and if b = ¢ (mod m) then m | (b-c¢).

And by one of the divisibility theorems we have:

m | (a-b+b-c) or, m| (a-c) so a=c (mod m). O
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