CISC-102
 Winter 2016
 Lecture 12

Euclid's Algorithm

Suppose a, b are non-zero integers then we can define a function on the integers, $\operatorname{gcd}(a, b)$, that returns the greatest common divisor of a and b. It will be convenient to further assume that $|\mathrm{a}| \geq|\mathrm{b}|$.

Euclid's algorithm to compute $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$ is way more efficient than computing all the divisors a and b. The algorithm is based on the following theorem.

Euclid's Theorem:

Let $\mathrm{a}, \mathrm{b}, \mathrm{q}, \mathrm{r}$ be integers such that $\mathrm{a}=\mathrm{qb}+\mathrm{r}$ then

$$
\operatorname{gcd}(\mathbf{a}, \mathrm{b})=\operatorname{gcd}(b, r)
$$

This translates to the following iterative algorithm, implemented in Python.

Euclid's Algorithm in the Python programming language. def euclid_gcd(a,b):
\# Assume $|\mathrm{a}|>=|\mathrm{b}|>0$
$r=a \% b \#$ this returns r s.t. $a=b q+r$
while $\mathrm{r}>0$:

$$
\begin{aligned}
& a, b=b, r \\
& r=a \% b \# \text { this returns r s.t. } a=b q+r
\end{aligned}
$$

return b

NOTE: The \% (mod) operator is found in many programming languages and returns the remainder when doing integer division.

For example: $a=154, b=18$.
so
iteration 0: (before the while loop) $\mathrm{r}=154 \% 18=10$ iteration 1: $\mathrm{r}=18 \% 10=8$
iteration 2: $\mathrm{r}=10 \% 8=2$
iteration 3: $\mathrm{r}=8 \% 2=0$
concluding that $\operatorname{gcd}(154,18)=2$
or
$\operatorname{gcd}(154,18)=\operatorname{gcd}(18,10)=\operatorname{gcd}(10,8)=\operatorname{gcd}(8,2)=\operatorname{gcd}(2,0)=2$.
Observe that as a side effect of Euclid's algorithm we can always find integers x, y such that $\operatorname{gcd}(a, b)=a x+b y$.

This can be illustrated with the previous example.
(1) $154=(8) 18+10$ implies $10=154-(8) 18$
(2) $18=(1) 10+8$ implies $8=18-(1) 10$
(3) $10=(1) 8+2$ implies $2=10-(1) 8$

Now we can write $\operatorname{gcd}(154,18)=2$ as:
$2=10-(1) 8$
$2=10-(1)[18-(1) 10]$
equation (3)
equation (2)
$2=154-(8) 18-(1)[18-(1)(154-(8) 18)]$ equation (1)
$2=(2) 154-(17) 18$

The proof of Euclid's Theorem appears in lecture 11.
It can also be shown that this function is extremely efficient when compared to looking at all the divisors of a and b .

Let $\mathrm{a}=250$, and $\mathrm{b}=575$. We can construct a prime factorization of a and b.

Prime factorization:
$250=(2)\left(5^{3}\right)$
$575=\left(5^{2}\right)(23)$
We can inspect the prime factorization of a and b to obtain a greatest common divisor.

Observe that 5^{2} is the greatest number that divides both a and b, that is, $\operatorname{gcd}(a, b)$. Using the prime factorizations of a and b is much less efficient than Euclid's algorithm. Nevertheless, the prime factorization is useful for obtaining other properties of the greatest common divisor.

Least Common Multiple

Given two non-zero ${ }^{1}$ integers a, b we can have many values that are positive common multiples of both $\mathrm{a} \& \mathrm{~b}$. By the well ordering principle we know that amongst all of those multiples there is one that is smallest, and this is known as the least common multiple of a and b . We can define a function $\operatorname{lcm}(\mathrm{a}, \mathrm{b})$ that returns this value.

Example: Suppose $\mathrm{a}=12$, and $\mathrm{b}=24$, so we have $\operatorname{lcm}(a, b)=24$.
In general if $\mathrm{a} \mid \mathrm{b}$ then $\operatorname{lcm}(\mathrm{a}, \mathrm{b})=|\mathrm{b}|$.
At this point it is worth mentioning that if $a \mid b$ then $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=|\mathrm{a}|$, and that $\operatorname{lcm}(\mathrm{a}, \mathrm{b}) \times \operatorname{gcd}(\mathrm{a}, \mathrm{b})=|\mathrm{ab}|$.

[^0]Example: Suppose $\mathrm{a}=13$, and $\mathrm{b}=24$, we have $\operatorname{lcm}(a, b)=(13)(24)$. We can also observe that $\operatorname{gcd}(a, b)=1$, that is the numbers are relatively prime. In general if a and b are relatively prime, that is, if $\operatorname{gcd}(a, b)=1$ then $\operatorname{lcm}(a, b)=|a b|$

So when $\operatorname{gcd}(a, b)=1$, we can observe that $\operatorname{lcm}(a, b) \times \operatorname{gcd}(a, b)=|a b|$.

Let $\mathrm{a}=250$, and $\mathrm{b}=575$. We can construct a prime factorization of a and b

Prime factorization
$250=(2)\left(5^{3}\right)$
$575=\left(5^{2}\right)(23)$
We can inspect the prime factorization of a and b to obtain the least common multiple and the greatest common divisor using the formulae:
$\operatorname{gcd}(575,250)=2^{\min (1,0)} \times 5^{\min (3,2)} \times 23^{\min (0,1)}=5^{2}$
and
$\operatorname{lcm}(575,250)=2^{\max (1,0)} \times 5^{\max (3,2)} \times 23^{\max (0,1)}$

$$
=2^{1} \times 5^{3} \times 23^{1}
$$

So in this case we also have $\operatorname{lcm}(a, b) \times \operatorname{gcd}(a, b)=|a b|$
$630=(2)\left(3^{2}\right)(5)(7)$
$84=\left(2^{2}\right)(3)(7)$
Using the formulae we get:

$$
\begin{aligned}
& \operatorname{gcd}(630,84)=2^{\min (1,2)} \times 3^{\min (2,1)} \times 5^{\min (1,0)} \times 7^{\min (1,1)} \\
&=2 \times 3 \times 7 \\
& \text { and }
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{lcm}(630,84) & =2^{\max (1,2) \times 3^{\max (2,1)} \times 5^{\max (1,0)} \times 7^{\max (1,1)}} \\
& =2^{2} \times 3^{2} \times 5 \times 7
\end{aligned}
$$

Again we have

$$
\begin{aligned}
630 \times 84 & =(2)\left(3^{2}\right)(5)(7) \times\left(2^{2}\right)(3)(7) \\
& =(2)(3)(7) \times\left(2^{2}\right)\left(3^{2}\right)(5)(7) \\
& =\operatorname{gcd}(630,84) \times \operatorname{lcm}(630,84)
\end{aligned}
$$

These ideas lead to the following theorem that is given without formal proof.

Theorem: Let a, b be non-zero integers, then

$$
\operatorname{gcd}(\mathrm{a}, \mathrm{~b}) \operatorname{lcm}(\mathrm{a}, \mathrm{~b})=|\mathrm{ab}| .
$$

Factoring vs. GCD

Factoring an integer N into its prime factors will use roughly \sqrt{N} operations.

Computing gcd(N, m) with Euclid's algorithm for $\mathrm{N}>\mathrm{m} \geq 0$ will use roughly $\log _{2} N$ operations.

N	$\log _{2} N$	\sqrt{N}
1024	10	32
109951162776	40	$1,048,576$
1×10^{301}	1000	3.27×10^{50}

The efficiency of Euclid's gcd algorithm is essential for implementing current public key crypto systems that are commonly used for e-commerce applications.

With a "key" decoding an encrypted message using Euclid's algorithm takes about 1000 operations. Without a "key" breaking an encrypted message takes about 3.27×10^{150} operations. This amounts to a small fraction of a second for decoding and many millions of years for breaking the encrypted message.

Congruence Relations

Let $\mathrm{a}, \mathrm{b}, \mathrm{m}$ be integers, $\mathrm{m}>0$, such that
$\mathrm{a} \% \mathrm{~m}=\mathrm{b} \% \mathrm{~m}$ that is:
$a=(p) m+r$ and $b=(q) m+r$
for example: let $\mathrm{a}=7, \mathrm{~b}=19, \mathrm{~m}=12$
$7=(0) 12+7$
$19=(1) 12+7$
$a \% m=7=b \% m$

We say that a is congruent to b modulo m written as:
$\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$

Integers modulo 4.

Definition:
 $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$ if $\mathrm{a} \% \mathrm{~m}=\mathrm{b} \% \mathrm{~m}$.

An equivalent definition is:

Definition:

$a \equiv b(\bmod m)$ if $m \mid(a-b)$.

To show that the two definitions are equivalent we need to show that:

if $\mathrm{a} \% \mathrm{~m}=\mathrm{b} \% \mathrm{~m}$ then $\mathrm{m} \mid(\mathrm{a}-\mathrm{b})$
and
if $\mathrm{m} \mid(\mathrm{a}-\mathrm{b})$ then $\mathrm{a} \% \mathrm{~m}=\mathrm{b} \% \mathrm{~m}$

if $\mathrm{a} \% \mathrm{~m}=\mathrm{b} \% \mathrm{~m}$ then $\mathrm{m} \mid(\mathrm{a}-\mathrm{b})$

Say a $\% \mathrm{~m}=\mathrm{b} \% \mathrm{~m}=\mathrm{r}$. Then we can write:

$$
\mathrm{a}=\mathrm{pm}+\mathrm{r} \text { and } \mathrm{b}=\mathrm{qm}+\mathrm{r}
$$

where p and q are integers.
we have:
(1) $(\mathrm{a}-\mathrm{b})=\mathrm{pm}+\mathrm{r}-\mathrm{qm}-\mathrm{r}=\mathrm{m}(\mathrm{p}-\mathrm{q})$
and equation (1) implies $(a-b)=m(p-q)$ so $m \mid(a-b)$.
On the other hand:
if $\mathrm{m} \mid \mathrm{a}-\mathrm{b})$ then $\mathrm{a} \% \mathrm{~m}=\mathrm{b} \% \mathrm{~m}$
The proof of this proposition is a bit involved so I will omit it.

Example: Let $\mathrm{m}=12$. Then we have:

$$
\begin{aligned}
& 13 \equiv 1(\bmod 12) \\
& 17 \equiv 5(\bmod 12)
\end{aligned}
$$

Which is familiar to everyone who uses a 24 hour clock.
And we can also have:

$$
241 \equiv 1(\bmod 12)
$$

$166 \equiv 10(\bmod 12)$
$120 \equiv 0(\bmod 12)$

Similarly

$90 \equiv 30(\bmod 60)$
$75 \equiv 15(\bmod 60)$
$120 \equiv 0(\bmod 60)$

We now show that congruence is an equivalence relation.
Theorem: Let m be a positive integer then

1. For any integer a we have $a \equiv a(\bmod m)$ (reflexive)
2. if $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$ then $\mathrm{b} \equiv \mathrm{a}(\bmod \mathrm{m})($ symmetric $)$
3. if $\mathrm{a} \equiv \mathrm{b}(\bmod m)$ and $b \equiv \mathrm{c}(\bmod m)$ then $\mathrm{a} \equiv \mathrm{c}(\bmod \mathrm{m})($ transitive $)$

I will prove 3.

Theorem: if $\mathrm{a} \equiv \mathrm{b}(\bmod m)$ and $\mathrm{b} \equiv \mathrm{c}(\bmod m)$ then $\mathrm{a} \equiv \mathrm{c}(\bmod \mathrm{m})$.

Proof:if $a \equiv b(\bmod m)$ then $m \mid(a-b)$, and if $b \equiv c(\bmod m)$ then $m \mid(b-c)$.

And by one of the divisibility theorems we have:
$\mathrm{m} \mid(\mathrm{a}-\mathrm{b}+\mathrm{b}-\mathrm{c})$ or, $\mathrm{m} \mid(\mathrm{a}-\mathrm{c})$ so $\mathrm{a} \equiv \mathrm{c}(\bmod \mathrm{m}) . \square$

[^0]: ${ }^{1}$ Multiples of zero are always zero, so this is a boring case.

