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Lecture 15 

You get to pick a box of 10 timbits® and choose as many 
as you like from the choice of  

Chocolate, Sugar, Plain, Glazed 

In how many different ways can you choose the tidbits? 

The way to model this is to consider a bag with balls 
labelled C,S,P,G and we count the number of ways to 
select 10 without ordering and with replacement. That is 
after we select the ball from the bag, we put it back (we 
replace it). We record the balls that were recorded but we 
disregard the ordering. 

Suppose the 10 choices in order are  

C,S,S,S,P,P,P,G,G,G 

There are ways     to order these. 

On the other hand suppose the choices in order are: 

C,C,C,C,C,C,C,C,C,C 

10!
3!3
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There are 10!/10! = 1 way to order this choice.  

It appears that the methods that we have so far studied do 
not solve this counting problem very easily.  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Consider the following seemingly unrelated problem, that 
is, counting the number of binary strings of length 13 
consisting of 10 0’s and 3 1’s.  

For example: 0100010001000  

We can count the total number of this type of string as  

13!/(3!10!) 

Now consider a bijection from binary strings to donut 
selections. 

I claim that there is a bijective mapping from the string  

0100010001000  ↔  C,S,S,S,P,P,P,G,G,G 

The mapping works as follows: 

The 10 0’s represent timbits®, the 1’s act as dividers 
partitioning the zeros into 4 groups.  

What does this 0000000000111 binary string represent?  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The general counting formula for a problem that can be 
modelled by selecting k times with replacement and 
without ordering for a collection of  n distinguishable 
balls is: 

Observe that this quantity can be written as: 
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Suppose we have a collection of n identical objects and 3 
cans of paint one red, one blue, and one green. We can 
assume that there is enough paint in each can to colour all 
of the objects.  

How many different ways are there to colour the objects 
so that each object gets only one colour?  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Suppose that we insist that each colour is used at least 
once. How many ways are there to colour n identical 
objects with 3 colours so that each colour is used at least 
once.  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The Pigeon Hole Principle 

If there are n pigeons, that all must sleep in a pigeon hole, 
and n-1 pigeon holes, then there is at least one pigeon 
hole where 2 pigeons sleep. 

This should be obvious! Mathematicians give it a name 
because it is a useful counting tool. 
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Can we find two people living in the G.T.A. that have 
exactly the same number of strands of hair on their heads? 

The answer is YES! And we can prove it using the pigeon 
hole principle.  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The population of the G.T.A is more than 6 million. 
Science tells us that nobody has more that 500,000 strands 
of hair on their heads.  

To solve the problem using the pigeon hole principle we 
imagine 500,000 pigeon holes labelled from 1, ..., 
500,000 and then imagine each resident of the G.T.A. 
entering the pigeon hole labelled with the number of 
strands of hair on their head. Since 6 million is greater 
than 500,000 we deduce that there will be at least one 
pigeon hole where two or more people have entered. 
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 Can we find 13 people living in the G.T.A. that have 
exactly the same number of strands of hair on their heads? 

Again the answer is yes! Can you argue why? 

Can we find 2 pairs of people living in the G.T.A. that 
have exactly the same number of strands of hair on their 
heads? 

The pigeon hole principle is useless for solving this 
problem and we leave this as an unsolved mystery.  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Let’s look at two more applications of the pigeon hole 
principle.  

Find the minimum number n of integers to be selected 
from S = {1, 2, …, 9} so that the sum of two of the 
integers is guaranteed to be even. 

If a number x is odd then x = 2p + 1 for some integer p. 
And similarly an odd number y yields,  y = 2q + 1 for 
some integer q. Thus x + y = 2(p+q + 1) and is divisible 
by two. Similarly one can show that the sum of 2 even 
numbers is even. 

This leads to the observation that as long as we have two 
odd or two even integers we get an even sum, so we 
partition S into even and odd numbers. By the pigeon hole 
principle 3 numbers from S will always contain a pair that 
sums to an even number. 

Pigeon holes are: {1,3,5,7,9} and {2,4,6,8}  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Find the minimum number n of integers to be selected 
from S = {1, 2, …, 9} so that the absolute difference 
between two of the integers is exactly 5. 

We partition S into pairs that yield a difference of 5.  

Pigeon holes are: {1,6},{2,7},{3,8},{4,9},{5} 

So we need to pick 6 numbers to guarantee that difference 
of two is 5. 
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