CISC-102

Fall 2016
Lecture 18

Logical Consequence and Arguments

Consider the expression:
p is true and p implies q is true, as a consequence we can deduce that q must be true.

This is a logical argument, and can be written symbolically as,
$\mathrm{p}, \mathrm{p} \rightarrow \mathrm{q} \vdash \mathrm{q}$
where: $\mathrm{p}, \mathrm{p} \rightarrow \mathrm{q}$ is called a sequence of premises, and q is called the conclusion. The symbol \vdash denotes a logical consequence.

A sequence of premises whose logical consequence leads to a conclusion is called an argument.

Valid Argument

We can now formally define what is meant by a valid argument.

The argument $P_{1}, P_{2}, P_{3}, \ldots, P_{n} \vdash Q$ is valid if and only if $P_{1} \wedge P_{2} \wedge P_{3} \wedge \ldots \wedge P_{n} \rightarrow Q$ is a tautology.

Example: Consider the argument

$$
\mathrm{p} \rightarrow \mathrm{q}, \mathrm{q} \rightarrow \mathrm{r}, \vdash \mathrm{p} \rightarrow \mathrm{r}
$$

We can see if this argument is valid by using truth tables to show that the proposition:

$$
(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{r}) \rightarrow(\mathrm{p} \rightarrow \mathrm{r})
$$

a tautology, that is, the proposition is true for all T / F values of $\mathrm{p}, \mathrm{q}, \mathrm{r}$.

p	\mathbf{q}	\mathbf{r}	$(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{r})$	$(\mathrm{p} \rightarrow \mathrm{r})$	$(\mathrm{p} \rightarrow \mathrm{q}) \wedge$ $(\mathrm{q} \rightarrow \mathrm{r})$, $\rightarrow(\mathrm{p} \rightarrow \mathrm{r})$
T	T	T	T	T	T
T	T	F	F	F	T
T	F	T	F	T	T
T	F	F	F	F	T
F	T	T	T	T	T
F	T	F	F	T	T
F	F	T	T	T	T
F	F	F	T	T	T

Consider the following argument:

If two sides of a triangle are equal then
the opposite angles are equal
T is a triangle with two sides that are not equal

The opposite angles of T are not equal
(With this notation the horizontal line separates a sequence of propositions from a conclusion.)

Let p be the proposition
"two sides of a triangle are equal" and let q be the proposition
"the opposite angles are equal"
We can re-write the argument in symbols as:

$$
\mathrm{p} \rightarrow \mathrm{q}, \neg \mathrm{p} \vdash \neg \mathrm{q}
$$

and as the expression:

$$
[(\mathrm{p} \rightarrow \mathrm{q}) \wedge \neg \mathrm{p}] \rightarrow \neg \mathrm{q}
$$

We can check that this is a valid argument by using a truth table, and verifying that the expression is a tautology.

\mathbf{p}	\mathbf{q}	$[(\mathrm{p} \rightarrow \mathrm{q}) \wedge \neg \mathrm{p}] \rightarrow \neg \mathrm{q}$
T	T	
T	F	
F	T	
F	F	

Propositional Functions

Let $\mathrm{P}(\mathrm{x})$ be a propositional function that is either true or false for each x in A.

That is, the domain of $\mathrm{P}(\mathrm{x})$ is a set A , and the range is \{true, false\}. NOTE: Sometimes propositional function are called predicates.

Observe that the set A can be partitioned into two subsets:

- Elements with an image that is true.
- Elements with an image that is false.

In particular we may define the truth set of $\mathrm{P}(\mathrm{x})$ as:
$\mathrm{T}_{\mathrm{P}}=\{\mathrm{x}: \mathrm{x}$ in $\mathrm{A}, \mathrm{P}(\mathrm{x})$ is true $\}$
Examples: Consider the following propositional functions defined on the positive integers.
$P(x): x+2>7 ; T_{P}=\{x: x>5\}$
$\mathrm{P}(\mathrm{x}): \mathrm{x}+5<3 ; \mathrm{T}_{\mathrm{P}}=\varnothing$
$\mathrm{P}(\mathrm{x}): \mathrm{x}+5>1 ; \mathrm{T}_{\mathrm{P}}=\mathbb{N}$

Quantifiers

There are two widely used logical quantifiers

Definition:

Universal Quantifier: \forall (for all)
Let $\mathrm{P}(\mathrm{x})$ be a propositional function. A quantified proposition using the propositional function can be stated as:

$$
(\forall \mathrm{x} \in \mathrm{~A}) \mathrm{P}(\mathrm{x}) \text { (for all } \mathrm{x} \text { in } \mathrm{A} \mathrm{P}(\mathrm{x}) \text { is true) }
$$

$\mathrm{Tp}=\{\mathrm{x}: \mathrm{x} \in \mathrm{A}, \mathrm{P}(\mathrm{x})\}=\mathrm{A}$
Or if the elements of A can be enumerated as:
$A=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$
We would have:
$P\left(x_{1}\right) \wedge P\left(x_{2}\right) \wedge P\left(x_{3}\right) \wedge \ldots$ is true.

Definition:

Existential Quantifier: \exists (there exists)
Let $\mathrm{P}(\mathrm{x})$ be a propositional function. A quantified proposition using the propositional function can be stated as:
$(\exists \mathrm{x} \in \mathrm{A}) \mathrm{P}(\mathrm{x})($ There exists an x in A s.t. $\mathrm{P}(\mathrm{x})$ is true)
$\mathrm{T}_{\mathrm{P}}=\{\mathrm{x}: \mathrm{x} \in \mathrm{A}, \mathrm{P}(\mathrm{x})\} \neq \varnothing$
Or if the elements of A can be enumerated as:
$\mathrm{A}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots\right\}$
We would have:
$\mathrm{P}\left(\mathrm{x}_{1}\right) \vee \mathrm{P}\left(\mathrm{x}_{2}\right) \vee \mathrm{P}\left(\mathrm{x}_{3}\right) \vee \ldots$ is true.

Quantifiers

Statement True when: False when:

$(\forall x \in A) P(x)$	$P(x)$ is true for every $x \in A$.	$P(x)$ is false for one or more $x \in A$.
$(\exists x \in A) P(x)$	$P(x)$ is true for one or more $x \in A$.	$P(x)$ is false for every $x \in A$.

Negating propositions

Let's make this simpler. Let $A=\{1,2\}$
Now consider:
$\neg(\exists \mathrm{x} \in \mathrm{A})$ such that $2^{\mathrm{x}}<\mathrm{x}$
We can expand this by considering every element in A individually as follows
$\neg\left(2^{1}<1 \vee 2^{2}<2\right)$
Recall DeMorgan's law (10b) in the "Laws" table.
$\neg(\mathrm{p} \vee \mathrm{q}) \equiv \neg \mathrm{p} \wedge \neg \mathrm{q}$
So in this particular case we have:

$$
\begin{aligned}
\neg\left(2^{1}<1 \vee 2^{2}<2\right) & \equiv \neg\left(2^{1}<1\right) \wedge \neg\left(2^{2}<2\right) \\
& \equiv\left(2^{1} \geq 2\right) \wedge\left(2^{2} \geq 2\right)
\end{aligned}
$$

Proposition: There exists an x in \mathbb{N}, such that $2^{x}<x$.
Let $\mathrm{p}(\mathrm{x})$ be the propositional function $2^{\mathrm{x}}<\mathrm{x}$ so we have:
$(\exists \mathrm{x} \in \mathbb{N}) \mathrm{p}(\mathrm{x})$ (There exists an x in \mathbb{N} s.t. $\mathrm{p}(\mathrm{x})$ is true) or $\mathrm{p}(1) \vee \mathrm{p}(2) \vee \mathrm{p}(3) \vee \ldots$ is true.

And the negation of this logical expression is:
$\neg(p(1) \vee p(2) \vee p(3) \vee \ldots)$
And by extending DeMorgan's law to more than two terms we get

$$
\neg(\mathrm{p}(1) \vee \mathrm{p}(2) \vee \mathrm{p}(3) \vee \ldots) \equiv(\neg \mathrm{p}(1) \wedge \neg \mathrm{p}(2) \wedge \neg \mathrm{p}(3) \wedge \ldots)
$$

The right hand side of the congruence can be restated as:
$(\forall \mathrm{x} \in \mathbb{N}) \neg \mathrm{p}(\mathrm{x})$
Since $\mathrm{p}(\mathrm{x})$ is $2^{\mathrm{x}}<\mathrm{x}$, we have the negation $\neg \mathrm{p}(\mathrm{x})$ is $2^{\mathrm{x}} \geq \mathrm{x}$

Finally we see that the negation of
"There exists an x in \mathbb{N}, such that $2^{\mathrm{x}}<\mathrm{x}$ " is:
"For all x in $\mathbb{N} 2^{x} \geq x . "$
And this is an example of the generalized DeMorgan's Law:

$$
\neg(\exists \mathrm{x} \in \mathrm{~A}) \mathrm{p}(\mathrm{x}) \equiv(\forall \mathrm{x} \in \mathrm{~A}) \neg \mathrm{p}(\mathrm{x})
$$

and the dual is:

$$
\neg(\forall \mathrm{x} \in \mathrm{~A}) \mathrm{p}(\mathrm{x}) \equiv(\exists \mathrm{x} \in \mathrm{~A}) \neg \mathrm{p}(\mathrm{x})
$$

Propositional functions with more than one variable

Consider the following illustrative example:
Let $\mathrm{p}(\mathrm{x}, \mathrm{y})$ be the proposition that " $\mathrm{x}+\mathrm{y}=10$ " where the ordered pair $(\mathrm{x}, \mathrm{y}) \in\{1,2, \ldots, 9\} \times\{1,2, \ldots, 9\}$.

Consider the following quantified statements:

$$
\neg(\forall x \in A) p(x) \equiv(\exists x \in A) \neg p(x)
$$

1. $\forall \mathrm{x} \exists \mathrm{y} p(\mathrm{x}, \mathrm{y})$
2. $\exists \mathrm{y} \forall \mathrm{xp}(\mathrm{x}, \mathrm{y})$
3. Says: "for every x there exists a y such that $x+y=10$ "
4. Says: "there exists a y such that for every $x, x+y=10$ "

Statement 1. is true, and statement 2, is false by inspection. This simply illustrates that the concepts that we have seen can be extended to more that one variable.

