CISC-102 Fall 2016 Lecture 18

Logical Consequence and Arguments

Consider the expression:

p is true and p implies q is true, as a consequence we can deduce that q must be true.

This is a logical argument, and can be written symbolically as,

 $p, p \to q \vdash q$

where: p, p \rightarrow q is called a sequence of <u>premises</u>, and q is called the <u>conclusion</u>. The symbol \vdash denotes a logical consequence.

A sequence of premises whose logical consequence leads to a conclusion is called an *argument*.

Valid Argument

We can now formally define what is meant by a valid argument.

The argument P_1 , P_2 , P_3 , ..., $P_n \vdash Q$ is valid if and only if $P_1 \land P_2 \land P_3 \land ... \land P_n \rightarrow Q$ is a tautology.

Example: Consider the argument

 $p \rightarrow q, q \rightarrow r, \vdash p \rightarrow r$

We can see if this argument is valid by using truth tables to show that the proposition:

 $(p \rightarrow q) \land (q \rightarrow r) \rightarrow (p \rightarrow r)$ a tautology, that is, the proposition is true for all T/F values of p,q,r.

р	q	r	$(p \rightarrow q) \land (q \rightarrow r)$	$(p \rightarrow r)$	$(p \to q) \land (q \to r),$
					$(\Psi \rightarrow I)$
Т	Т	Т	Т	Т	Т
Т	Т	F	F	F	Т
Т	F	Т	F	Т	Т
Т	F	F	F	F	Т
F	Т	Т	Т	Т	Т
F	Т	F	F	Т	Т
F	F	Т	Т	Т	Т
F	F	F	Т	Т	Т

Consider the following argument:

If two sides of a triangle are equal then the opposite angles are equal T is a triangle with two sides that are not equal

The opposite angles of T are not equal

(With this notation the horizontal line separates a sequence of propositions from a conclusion.)

Let p be the proposition "two sides of a triangle are equal" and let q be the proposition "the opposite angles are equal"

We can re-write the argument in symbols as:

 $p \rightarrow q, \neg p \vdash \neg q$

and as the expression:

 $[(p \to q) \land \neg p] \to \neg q$

We can check that this is a valid argument by using a truth table, and verifying that the expression is a tautology.

р	q	$[(p \to q) \land \neg p] \to \neg q$
Т	Т	
Т	F	
F	Т	
F	F	

Propositional Functions

Let P(x) be a propositional function that is either true or false for each x in A.

That is, the domain of P(x) is a set A, and the range is $\{true, false\}$. NOTE: Sometimes propositional function are called *predicates*.

Observe that the set A can be partitioned into two subsets:

- Elements with an image that is true.
- Elements with an image that is false.

In particular we may define the *truth set* of P(x) as: T_P = { x : x in A, P(x) is true}

Examples: Consider the following propositional functions defined on the positive integers.

$$\begin{split} P(x): & x+2 > 7 \text{ ; } T_P = \{x: x > 5\} \\ P(x): & x+5 < 3 \text{ ; } T_P = \emptyset \\ P(x): & x+5 > 1 \text{ ; } T_P = \mathbb{N} \end{split}$$

Quantifiers

There are two widely used logical quantifiers

Definition:

Universal Quantifier: \forall (for all)

Let P(x) be a propositional function. A quantified proposition using the propositional function can be stated as:

 $(\forall x \in A) P(x)$ (for all x in A P(x) is true)

 $Tp = \{x : x \in A, P(x)\} = A$

Or if the elements of A can be enumerated as:

```
A = \{x_1, x_2, x_3, ...\}
```

We would have:

 $P(x_1) \wedge P(x_2) \wedge P(x_3) \wedge \dots$ is true.

Definition:

Existential Quantifier: ∃(there exists)

Let P(x) be a propositional function. A quantified proposition using the propositional function can be stated as:

 $(\exists x \in A) P(x)$ (There exists an x in A s.t. P(x) is true)

 $T_{P} = \{x : x \in A, P(x)\} \neq \emptyset$

Or if the elements of A can be enumerated as:

$$A = \{x_1, x_2, x_3, ...\}$$

We would have:

 $P(x_1) \lor P(x_2) \lor P(x_3) \lor \dots$ is true.

Quantifiers

Statement	True when:	False when:
$(\forall x \in A) P(x)$	P(x) is true for every $x \in A$.	P(x) is false for one or more $x \in A$.
$(\exists x \in A) P(x)$	P(x) is true for one or more $x \in A$.	P(x) is false for every $x \in A$.

Negating propositions

Let's make this simpler. Let $A = \{1,2\}$ Now consider: $\neg(\exists x \in A)$ such that $2^x < x$

We can expand this by considering every element in A individually as follows

 $\neg (2^1 < 1 \lor 2^2 < 2)$

Recall DeMorgan's law (10b) in the "Laws" table.

 $\neg (p \lor q) \equiv \neg p \land \neg q$

So in this particular case we have:

$$\neg (2^{1} < 1 \lor 2^{2} < 2) \equiv \neg (2^{1} < 1) \land \neg (2^{2} < 2)$$
$$\equiv (2^{1} \ge 2) \land (2^{2} \ge 2)$$

Proposition: There exists an x in \mathbb{N} , such that $2^x < x$.

Let p(x) be the propositional function $2^x < x$ so we have: $(\exists x \in \mathbb{N}) p(x)$ (There exists an x in \mathbb{N} *s.t.* p(x) is true) or $p(1) \lor p(2) \lor p(3) \lor ...$ is true.

And the negation of this logical expression is:

 $\neg (p(1) \lor p(2) \lor p(3) \lor ...)$

And by extending DeMorgan's law to more than two terms we get

 $\neg (p(1) \lor p(2) \lor p(3) \lor ...) \equiv (\neg p(1) \land \neg p(2) \land \neg p(3) \land ...)$

The right hand side of the congruence can be restated as:

 $(\forall x \in \mathbb{N}) \neg p(x)$

Since p(x) is $2^x < x$, we have the negation $\neg p(x)$ is $2^x \ge x$

Finally we see that the negation of

"There exists an x in \mathbb{N} , such that $2^x < x$ " is:

"For all x in $\mathbb{N} 2^x \ge x$."

And this is an example of the generalized DeMorgan's Law:

$$\neg (\exists x \in A)p(x) \equiv (\forall x \in A)\neg p(x)$$

and the dual is:

$$\neg(\forall x \in A)p(x) \equiv (\exists x \in A)\neg p(x)$$

Propositional functions with more than one variable

Consider the following illustrative example:

Let p(x,y) be the proposition that "x+y = 10" where the ordered pair (x,y) $\in \{1, 2, ..., 9\} \times \{1, 2, ..., 9\}$.

Consider the following quantified statements:

$$\neg(\forall x \in A)p(x) \equiv (\exists x \in A)\neg p(x)$$

1. $\forall x \exists y \ p(x,y)$ 2. $\exists y \forall x \ p(x,y)$

1. Says: "for every x there exists a y such that x + y = 10" 2. Says: "there exists a y such that for every x, x+y = 10"

Statement 1. is true, and statement 2, is false by inspection. This simply illustrates that the concepts that we have seen can be extended to more that one variable.