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CISC-102 
Fall 2016 
Lecture 18  

Logical Consequence and Arguments 

Consider the expression: 

p is true and p implies q is true , as a consequence we can 
deduce that q must be true.  

This is a logical argument, and can be written 
symbolically as,  

p, p → q ⊢ q  

where: p, p → q is called a sequence of premises, and  q is 
called the conclusion.  
The symbol ⊢ denotes a logical consequence.  

A sequence of premises whose logical consequence leads 
to a conclusion is called an argument. 
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Valid Argument 

We can now formally define what is meant by a valid 
argument.  

The argument P1, P2, P3 , ... , Pn ⊢ Q is valid if and 
only if P1 ∧ P2 ∧ P3 ∧ ... ∧ Pn → Q is a tautology.  

Example: Consider the argument  

p → q, q → r, ⊢ p → r  
We can see if this argument is valid by using truth tables 
to show that the proposition: 

(p → q) ∧ (q → r) → (p → r) 
 a tautology, that is, the proposition is true for all T/F 
values of p,q,r.  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p q r (p → q) ∧ (q → r) (p → r) (p → q) ∧ 
(q → r), 
→ (p → r)

T T T T T T

T T F F F T

T F T F T T

T F F F F T

F T T T T T

F T F F T T

F F T T T T

F F F T T T
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Consider the following argument: 

If two sides of a triangle are equal then  
      the opposite angles are equal  
T is a triangle with two sides that are not equal 
               

The opposite angles of T are not equal 

(With this notation the horizontal line separates a 
sequence of propositions from a conclusion.) 
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Let p be the proposition  
“two sides of a triangle are equal” 

and let q be the proposition  
“the opposite angles are equal” 

We can re-write the argument in symbols as: 

p → q, ¬p ⊢ ¬q 

and as the expression:  
[(p → q) ∧ ¬p ]→ ¬q 

We can check that this is a valid argument by using a truth 
table, and verifying that the expression is a tautology. 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p q [(p → q) ∧ ¬p ]→ ¬q

T T

T F

F T

F F
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Propositional Functions 

Let P(x) be a propositional function that is either true or 
false for each x in A.  

That is, the domain of P(x) is a set A, and the range is 
{true, false}. NOTE: Sometimes propositional function 
are called predicates. 

Observe that the set A can be partitioned into two subsets:  

•Elements with an image that is true. 
•Elements with an image that is false. 

In particular we may define the truth set of P(x) as: 
TP = { x : x in A, P(x) is true} 

Examples: Consider the following propositional 
functions defined on the positive integers.  

P(x): x + 2 > 7 ; TP = {x : x > 5} 
P(x): x + 5 < 3 ; TP = ∅ 
P(x): x + 5 > 1 ; TP = ℕ  
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Quantifiers 
There are two widely used logical quantifiers 

Definition: 
Universal Quantifier: ∀ (for all) 

Let P(x) be a propositional function. A  quantified 
proposition using the propositional function can be stated 
as: 

 (∀x ∈ A) P(x) (for all x in A P(x) is true) 

Tp = {x :x ∈ A, P(x)} = A 

Or if the elements of A can be enumerated as: 

A = {x1, x2, x3, ...} 

We would have: 

P(x1) ∧ P(x2) ∧ P(x3) ∧ ... is true. 
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Definition: 
Existential Quantifier: ∃(there exists) 

Let P(x) be a propositional function. A  quantified 
proposition using the propositional function can be stated 
as: 

(∃x ∈ A) P(x) ( There exists an x in A s.t. P(x) is true) 

TP = {x :x ∈ A, P(x)} ≠ ∅ 

Or if the elements of A can be enumerated as: 

A = {x1, x2, x3, ...} 

We would have: 

P(x1) ∨ P(x2) ∨ P(x3) ∨ ... is true. 
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Quantifiers 
  
Statement True when: False when:
 (∀x ∈ A) P(x) P(x) is true for 

every x ∈ A.
P(x) is false for 
one or more  
x ∈ A. 

(∃x ∈ A) P(x) P(x) is true for 
one or more  
x ∈ A.

P(x) is false for 
every x ∈ A.
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Negating propositions  

Let’s make this simpler. Let A = {1,2} 
Now consider: 
¬(∃x ∈ A) such that 2x < x  

We can expand this by considering every element in A 
individually as follows 

¬( 21 <  1 ∨ 22 < 2) 

Recall DeMorgan’s law (10b) in the “Laws” table. 

¬ (p ∨ q) ≡ ¬ p ∧ ¬ q 

So in this particular case we have: 

¬( 21 < 1 ∨ 22 < 2) ≡  ¬(21 < 1 ) ∧ ¬(22 < 2)  
                               ≡  (21 ≥ 2) ∧ (22 ≥ 2)  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Proposition: There exists an x in ℕ, such that 2x < x. 

Let p(x) be the propositional function 2x < x 
so we have: 
(∃x ∈ ℕ) p(x) ( There exists an x in ℕ s.t. p(x) is true) 
or 
p(1) ∨ p(2) ∨ p(3) ∨ ... is true. 

And the negation of this logical expression is: 

¬(p(1) ∨ p(2) ∨ p(3) ∨ ...)  

And by extending DeMorgan’s law to more than two 
terms we get 

¬(p(1) ∨ p(2) ∨ p(3) ∨ ...) ≡ (¬p(1) ∧ ¬p(2) ∧ ¬p(3) ∧...) 

The right hand side of the congruence can be restated as: 

(∀x∈ ℕ) ¬ p(x) 

Since p(x) is 2x < x, we have the negation ¬ p(x) is 2x ≥ x 
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Finally we see that the negation of   

 “There exists an x in ℕ, such that 2x < x”  
is: 

  “For all x in ℕ 2x ≥ x.” 

And this is an example of the generalized DeMorgan’s 
Law: 
  

¬(∃x ∈ A)p(x) ≡ (∀x∈ A)¬p(x) 

and the dual is: 

¬(∀x ∈ A)p(x) ≡ (∃x∈ A)¬p(x) 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Propositional functions with more than one variable 

Consider the following illustrative example: 

Let p(x,y) be the proposition that “x+y = 10” where the 
ordered pair (x,y) ∈ {1, 2, ..., 9} × {1, 2, ..., 9}. 

Consider the following quantified statements: 

¬(∀x ∈ A)p(x) ≡ (∃x∈ A)¬p(x) 

1.  ∀x ∃y  p(x,y) 
2.   ∃y ∀x p(x,y) 

1. Says: “for every x there exists a y such that x + y = 10” 
2. Says: “there exists a y such that for every x, x+y = 10” 

Statement 1. is true, and statement 2, is false by 
inspection. This simply illustrates that the concepts that 
we have seen can be extended to more that one variable.  
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