Lecture 18 March 17,2016

CISC-102

Logical Consequence and Arguments

Consider the expression:

p 1s true and p implies q 1s true , as a consequence we can
deduce that q must be true.

This is a logical argument, and can be written
symbolically as,

p,p—q-q

where: p, p — q 1s called a sequence of premises, and q 1s
called the conclusion.
The symbol + denotes a logical consequence.

A sequence of premises whose logical consequence leads
to a conclusion is called an argument.
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Valid Argument

We can now formally define what is meant by a valid
argument.

The argument Py, P2, P3, ..., Po = Q is valid if and
only if P1 A P2 A P3 A ... A Pn— Q is a tautology.

Example: Consider the argument

p—>q¢q—rLEp—or
We can see if this argument is valid by using truth tables
to show that the proposition:

P—=>PAr(@—1)—(P—1)
a tautology, that is, the proposition is true for all T/F
values of p,q,r.
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Consider the following argument:

If two sides of a triangle are equal then

the opposite angles are equal
T 1s a triangle with two sides that are not equal

The opposite angles of T are not equal

(With this notation the horizontal line separates a
sequence of propositions from a conclusion.)
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Let p be the proposition
“two sides of a triangle are equal”
and let q be the proposition
“the opposite angles are equal”

We can re-write the argument in symbols as:
pP—q " PFETq
and as the expression:

(=D ADP]—q

We can check that this 1s a valid argument by using a truth
table, and verifying that the expression is a tautology.
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Propositional Functions

Let P(x) be a propositional function that is either true or
false for each x in A.

That is, the domain of P(x) 1s a set A, and the range is
{true, false}. NOTE: Sometimes propositional function
are called predicates.

Observe that the set A can be partitioned into two subsets:

« Elements with an image that is true.
« Elements with an image that is false.

In particular we may define the truth set of P(x) as:
Te={x:x1mnA, P(x) 1s true}

Examples: Consider the following propositional
functions defined on the positive integers.

PxX):x+2>7;Tp={x:x>35}
P(x):x+5<3;Tp=C
PxX):x+5>1;Tp=N
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Quantifiers
There are two widely used logical quantifiers

Definition:
Universal Quantifier: V (for all)

Let P(x) be a propositional function. A quantified

proposition using the propositional function can be stated
as:

(Vx € A) P(x) (for all x in A P(X) is true)
Tp={xxe A, P(x)} =A

Or if the elements of A can be enumerated as:
A= {x1, X2, X3, ...}

We would have:

P(x1) A P(x2) A P(X3) A ... 1S true.
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Definition:
Existential Quantifier: d(there exists)

Let P(x) be a propositional function. A quantified

proposition using the propositional function can be stated
as:

(dx € A) P(x) ( There exists an x in A s.z. P(X) 1s true)
Tr={xxe A,PX)} #0

Or 1f the elements of A can be enumerated as:

A= {x1, X2, X3, ...}

We would have:

P(x1) v P(x2) v P(x3) Vv ... is true.
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Quantifiers

Statement

True when:

March 17,2016

False when:

(Vx e A) P(x)

(dx € A) P(x)

10

P(x) 1s true for
every X € A.

P(x) 1s true for
one or more
x € A.

P(x) 1s false for
one or more

X € A.

P(x) 1s false for
every x € A.
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Negating propositions

Let’s make this simpler. Let A= {1,2}
Now consider:
—(dx € A) such that 2* <x

We can expand this by considering every element in A
individually as follows

—(21< 1v22<2)

Recall DeMorgan’s law (10b) in the “Laws” table.
~(PVvdE"pATQ

So 1n this particular case we have:

—(21<1v22<2)= -21<1)A—(22<2)
= 2'=>22)A(22>2)

11
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Proposition: There exists an x in N, such that 2* <x.

Let p(x) be the propositional function 2* < x
so we have:

(dx € N) p(x) ( There exists an x in N s.£ p(X) is true)
or

p(1) v p2) vp) V... is true.
And the negation of this logical expression 1s:

~(p(1) vp(Z) vpB) Vv ..)

And by extending DeMorgan’s law to more than two
terms we get

~(p(1) v p2) vpB) v ...) = (p(1) A 7p(2) A 7p(3) A...)

The right hand side of the congruence can be restated as:
(Vxe N) 7 p(x)

Since p(x) 1s 2* < x, we have the negation — p(x) is 2* > x

12
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Finally we see that the negation of

“There exists an x in N, such that 2* < x”
1S:

“Forall x iIn N 2*x>x.”

And this is an example of the generalized DeMorgan’s
Law:

—(dx € A)p(x) = (Vxe A)p(x)
and the dual is;:

—(Vx € A)p(x) = (dxe A)p(x)

13
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Propositional functions with more than one variable
Consider the following illustrative example:

Let p(x,y) be the proposition that “x+y = 10” where the
ordered pair (x,y) € {1,2,...,9} x {1, 2, ...,9}.

Consider the following quantified statements:

~(Vx € A)p(x) = (Ixe A)7p(x)

1. Vxdy p(x,y)
2. dy Vx p(x,y)

1. Says: “for every x there exists a y such that x +y = 10"
2. Says: “there exists a y such that for every x, x+y = 10”

Statement 1. 1s true, and statement 2, 1s false by

inspection. This simply illustrates that the concepts that
we have seen can be extended to more that one variable.
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