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CISC-102 
Winter 2016 
Lecture 19  

Methods of Proof 

Axioms 

Definition: An axiom is a statement or proposition that is 
regarded as being established, accepted, or self-evidently 
true. 

Mathematics is a system created by humans, and can be 
developed in its entirety by a small collection of axioms 
that are assumed to be true.  

Euclid of Alexandria (300 BC) developed an axiomatic 
approach for geometry starting with only 5 axioms.  

In this course we have been making quite a few 
assumptions about what we accept as true. In practice it 
would be excruciating to prove everything from basic 
principles. There is an estimate that proving 2+2=4 from 
basic principles requires more than 20,000 steps.  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Prove that 2 | a(a+1), for all a ∈ ℕ. 

An informal proof of this result could be the observation 
that  either a or (a+1) must be divisible by 2, and therefore  
the product a(a+1) must also be divisible by 2.  

However, in our studies we saw a very similar example 
that provides a “template” for proving the result. 

That is: Let a ∈ ℕ show that 3 | a(a+1)(a+2), that is the 
product of three consecutive integers is divisible by 3.  
  
Familiar facts from high school math, as well as results 
that we have seen this term and used repeatedly can be 
assumed without further proof.  

In practice for a course like this there is usually a very 
similar proof that you have seen that can be used as a 
template. And this will implicitly use assumptions that 
you may use.  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Logical Deduction 

We use logical deduction in a natural way to solve puzzles  
of many different forms, ranging from playing Sudoku to 
solving murder mystery’s. 

In mathematics logical deduction is used as we proceed 
from step to step in a proof.  

The basic rule that we use, as described in formal logic,  
is: 

p, p → q ⊢ q 

We can verify that this is a valid argument. We can also 
reason this out informally as: 

If p is true, and p implies that q is true, then we may 
conclude that q is true.  

As an aside, this inference rule is named “modus ponens” 
by logicians, and is also known as the “law of 
detachment”. You can look this up if you are interested 
but as far as this course goes, I think the informal 
explanation is sufficient. 
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Proof Templates 

Proof by cases.  

Proofs by cases can be used for the following results: 

1. Prove that 2 | a(a+1), for all a ∈ ℕ. 

2. Prove that 3 | a(a+1)(a+2), for all a ∈ ℕ. 

The basic template is to partition all possible outcomes 
into individual cases that are easier to handle separately 
than together.  
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Consider the following problem: 

Prove that 6 | a(a+1)(a+2), for all a ∈ ℕ. 

Proof: We can use case analysis from the previous two 
results (result 1, result 2) as a template. We already know 
by result 2 that: 

3 | a, or 3 | a+1 or 3 | a+2 so.  

Case 1. 3 | a, then by result 1. 2 | (a+1)(a+2). Thus 6 | a(a
+1)(a+2). 

Case 2. 3 | a+2, then by result 1. 2  | a(a+1). Thus 6 | a(a
+1)(a+2). 

Case 3. 3 | a+1.   

 Case 3.1 a and a+2 are both even, then 2 | a and 3 | a
+1, so 6 | a(a+1)(a+2). 
  
 Case 3.2 a and a+2 are both odd, therefore a+1 is 
even, so 2 | a+1, so a+1 is divisible by 2 and 3 and we are 
back to square 1. OOPS! 
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Prove that 6 | a(a+1)(a+2), for all a ∈ ℕ. 

Here is a very slick proof: 

Proof: Observe that a(a+1)(a+2) = (a+2)!/(a-1)! which is 
equal to: 

 

We know that  is an integer so we conclude that:  
6 | a(a+1)(a+2).  ◻  

6
�a+2

3

�
= 6 (a+2)!

3!(a�1)!

�a+2
3

�
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Prove that a(a+1)(a+2)(a+3) is divisible by 24.  

Let’s try the previous solution as a template. 

Proof: Observe that a(a+1)(a+2)(a+3) = (a+3)!/(a-1)! 
which is equal to: 

 

We know that  is an integer so we conclude that:  
24 | a(a+1)(a+2)(a+3). ◻  

24
�a+3

4

�
= 24(a+3)!

4!(a�1)!

�a+3
4

�
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Theorem: Every collection of 6 people includes 3 people 
who have all met each other, or 3 people who have never 
met.  

Proof:   
Let x denote one of the 6 people. Now consider the 
number of people from the other 5 who have met or have 
not met x.  

There are two cases to consider. 

• case 1: There are 3 or more people who have met x.  
• case 1.1 Among those who have met x, none have 
met each other, so this satisfies the requirements of 
the theorem. 
• case 1.2 Among those who have met x, at least one 
pair have met each other. Since they have also met x, 
this satisfies the requirements of the theorem 
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• case 2: There are 3 or more people who have not met x. 
• case 2.1 Those who have not met x, have all met 
each other, and this satisfies the requirements of the 
theorem. 
• case 2.2 Amongst those who have not met x, there 
are 2 (or more) who have not met each other. That 
pair together with x satisfy the requirements of the 
theorem. 

Thus we have proved that every collection of 6 people 
includes 3 people who all have met each other, or 3 
people who have never met by using an exhaustive case 
analysis. ◻ 

Note: This collection of 6 people can be thought of as a 
set of 6 elements. People either have met or have never 
met, there is no other possibility. In general the “met” 
property could be any arbitrary (Boolean) function of two 
elements of the set that returns true or false.  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Direct Proof: 

Let a be a natural number. If a is even then a+1 is odd and 
a+2 is even. 

Proof: If a is an even natural number we have  

a = 2m  for some natural number m. 

then  

a + 1 = 2m + 1 implying that a is odd, 

and  

a+2 = 2m + 2 = 2(m+1) implying that a is even. ◻ 
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Indirect Proof 

If a is an integer and a2  is odd then a is also odd. 

Proof: If a2 is odd we have: 

a2 = 2m + 1  
                          

Now a can be written as: 

a  =  

and I don’t know how to continue this proof.  

Sometimes the contrapositive leads to a simpler proof.  

The proposition is: 

     If a is an integer and a2  odd then a is also odd. 

or for a an integer:   a2  odd → a odd 

The contrapositive would be 

not a odd →  not a2 odd or  

a even → a2 even.  

p
2m+ 1
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If a is an integer and a2  is odd then a is also odd.  

Proof: We will prove that the contrapositive is true. That 
is, let a be an integer, if a is even then a2 is even. 

 We know in general that if  b | c then b | mc for any 
integer m. Therefore as a special case we have 2 | a so  
2 | a2.  Therefore we can conclude that if  a2 is odd then a 
must also be odd. ◻                                            

An indirect proof proves the contrapositive of the 
proposition. 
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Proof by Contradiction. 
Let a be an integer, if a2 is even then a is even.  

How would we prove this proposition? 

Proof: Suppose a2 is even and a is odd. If a is odd then we 
have the equation: a = 2m + 1, where m is an integer. 
Now square both sides to get the equation:  

a2 = 4 m2 + 4m + 1.               ( 1 ) 
Let n = m2 + m, and notice that n is an integer. Thus 
equation ( 1 ) simplifies to: 

a2 = 4 n + 1  
and is odd. Assuming a2 is even and a odd leads to a 
contradiction, so we conclude that if a2 is even then a is 
even.  ◻ 
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Proof by the Pigeon Hole principle: 

Prove that at least 5 days of the month of March fall on 
the same week day.  

Proof: Imagine that there are 7 pigeon holes with 4 chairs 
inside each. There are 31 days in March so at most 28 
days can be seated on the chairs. Therefore there are at 
least 5 days that fall on the same day of the week. ◻ 

The pigeon hole principle is a particular case of a larger 
method of proof called proof by contradiction.  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Proof by Contradiction 

We know that p, p → q ⊢ q that is if p is true and p → q is 
true then the logical consequence is that q must be true.  

Suppose we know that a proposition is false, and we want 
to prove that  p is true. Consider this round about method 
of proving that p is true.  

¬p,  ¬p → F ⊢ p 

We can verify this with a truth table.  

p ¬p ¬p → F ¬p ∧ ¬p → F → p
T F T T

F T F T
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Prove that at least 5 days of the month of March fall on 
the same week day. 

Let p be the proposition that 5 or more days of the month 
of March fall on the same day of the week. Now ¬p is the 
proposition that at most 4 days of the month of March fall 
on the same day of the week. The false proposition is 7 × 
4 ≥ 31. (7 × 4 ≥ 31 is the same as saying that every day in 
March gets to sit in a chair in the pigeon holes.) The 
assumption that at most 4 days of March fall on the same 
day of the week leads to a contradiction. ◻  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We can further dissect the concept of proof by 
contradiction by taking a closer look at a previous 
problem. 

Let a be an integer, if a2 is even then a is even. 

Let p(a) denote the proposition a2 even → a even 

The assertion can be re-written as: 
∀a, a∊ℤ, p(a) 

and its negation: 
¬(∀a, a∊ℤ, p(a)) ≡ ∃a, a∊Z,¬p(a) 

In our proof by contradiction we showed that:  
¬(∀a, a∊ℤ, p(a)) ≡ ∃a, a∊Z,¬p(a) ≣ False 

and this implies   
∀a, a∊ℤ, p(a) ≡ True 
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Prove that √2 is irrational.  

Proof: We show that the assumption that √2 is rational 
leads to a contradiction. 

If √2 is rational then we can write it as the quotient a/b 
where a,b are both integers. Furthermore, we assume that 
a/b have no common factors, that is we reduced the 
quotient to lowest terms. Thus: 

√2 = a/b           
square both sides of equation:  

2 = a2/b2 

now multiply both sides by b2: 
2 b2 = a2. 

Therefore a2 is even implying a is even. 
If a is even we can write it as a = 2m for some integer m. 
Now we get  

2b2 = 4m2. 
Divide both sides by 2: 

b2 = 2m2. 
So b2 is even implying b is even.  

We have established that both a and b are even, but when 
we started we said that a and b have no common factors. 
Thus we have established a contradiction to the assertion 
that √2 is rational, so we conclude that √2 is irrational. ◻ 

�18



Lecture 19 March 22, 2016

Recall we saw a proof by contradiction when we studied 
prime factorization. (Lecture 10,  Feb. 4 ) 

Theorem: Every integer n  > 1 is either prime or can be 
written as a product of primes. 

Proof:  
(1) Suppose there is an integer k  > 1 that is the largest  

integer that is the product of primes. This then implies 
that the integer k+1 is not prime or a product of primes.  

(2) If k+1 is not prime it must be composite and:  
  k+1 = ab,  a,b ∈ ℤ,  a,b ∉ {1,-1, k+1, -(k+1)}. 

(3) Therefore, |a| <  k+1 and |b| <  k+1.  
  So |a| and |b| are prime or a product of primes.  
  

(4) Since k+1 is a product of a and b it follows that it too 
is a product of primes.  
  

(5) Thus we have contradicted the assumption that there is 
a largest integer that is the product of primes, and we 
can therefore conclude that every integer n > 1 is either 
prime or written as a product of primes.  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In proving that “every integer n  > 1 is either prime or can 
be written as a product of primes” we used the well 
ordering principle to justify the fact that if there is an 
integer that is the product of primes then there is a least 
integer that is the product of primes. Well ordering is also 
implied when we argue that we can express a rational 
number in lowest terms.  
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Some additional problems. 

1. Prove |xy| = |x| |y| for all integers x and y. 
2. Prove that the sum of two rational numbers is rational. 
3. Prove that if 3n+2 is odd, then n is odd. 
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