CISC-102 Winter 2016 Lecture 2

Sets

Definition: (From Schaum's Notes)

A set may be viewed as any well-defined collection of objects, called the elements or members of the set.

This sentence defines in a mathematical sense the term set and the term element. Key things to remember with sets. Always use curly braces $\}$.

Sets represent an "unordered" collection of distinct objects.
$\boldsymbol{U}:$ All sets under investigation in any application of set theory are assumed to belong to some fixed large set called the universal set.
\varnothing : A set with no elements is called the empty set or null set.

For any set A, we have: $\varnothing \subseteq A \subseteq \boldsymbol{U}$
The empty set is a subset of every set, and the universal set is a superset of every set.

Hand Shakes

Let's convert the hand shake problem into an "official" math problem using math notation.

The basic building block will be the set.

Sets
Let $S=\{a, b, c, d, e, f, g\}$ denote the set of party goers.

A handshake can be represented as a two element subset of $S,\{a, b\}$.
Q. How many two element subsets are there of a set of n elements?

This question is a precise "model" of the handshake problem.

Notation

Consider the set $\mathrm{A}=\{1,2,3\}$.
A is a set consisting of 3 elements.
$\{1\} \subseteq \mathrm{A},(\{1\}$ is a subset of A$)$
$1 \in A(1$ is an element of $A)$
1.26 Which of the following sets are equal?
$A=\left\{x \mid x^{2}-4 x+3=0\right\}$,
$B=\left\{x \mid x^{2}-3 x+2=0\right\}$,
$C=\{x \mid x \in \mathbf{N}, x<3\}$,
$\mathrm{D}=\{\mathrm{x} \mid \mathrm{x} \in \mathbf{N}, \mathrm{x}$ is odd, $\mathrm{x}<5\}$,
$\mathrm{E}=\{1,2\}$,
$\mathrm{F}=\{1,2,1\}$,
$\mathrm{G}=\{3,1\}$,
$\mathrm{H}=\{1,1,3\}$.

$$
\begin{aligned}
& \text { 1.1 Which of the following sets are equal? } \\
& A=\{x, y, z\} \\
& B=\{z, y, z, x\} \\
& C=\{y, x, y, z\}, \\
& D=\{y, z, x, y\} .
\end{aligned}
$$

Sets

Definition: (From Schaums)
A set may be viewed as any well-defined collection of objects, called the elements or members of the set.

In this context "well-defined" means distinct or distinguishable objects.

> Examples:
> Set of people in this room right now. Set of coins in my pocket.

Note: If I have two (or more) quarters then I need to be able to distinguish one from the other if I want to consider the coins as a set. If I have no coins in my pocket then the set of coins in my pockets is an empty set.

More notation:
Subsets, supersets
$\mathrm{A} \subseteq \mathrm{C}(\mathrm{A}$ is a subset of C , or A is contained in
C)
$\mathrm{C} \supseteq \mathrm{A}(\mathrm{C}$ is a superset of A, or C contains A$)$

Proper subsets, proper supersets
$\mathrm{A} \subset \mathrm{C}(\mathrm{A}$ is a proper subset of C , or A is
contained in C , and not equal to C .)
$\mathrm{C} \supset \mathrm{A}(\mathrm{C}$ is a proper superset of A , or C
contains A, and is not equal to A.)

Seating Arrangements

There is a large table at the party and Alice wants to experience every possible seating arrangement. How many ways can 7 people sit at a table?

This "seating arrangement question" is equivalent to asking for the number of different ways to order 7 people.

Number of ways to order 1 person? 1.
Number of ways to order 2 people? $(1,2)(2,1)$. 2*1
Number of ways to order 3 people? $(3,1,2)$
(3,2,1)
$(1,3,2)(2,3,1)(1,2,3)(2,13) .3 * 2 * 1$
Number of ways to order 4 people?
Guess: $4 * 3 * 2 * 1=4$!

Permutations

There are n ! ways to order n distinct objects
Recall n ! (n factorial) is given by the expression:

$$
n!=n \times(n-1) \times(n-2) \times \ldots \times 1
$$

Lottery Tickets

Lotto 6-49, players choose 6 numbers from 1 to 49.

How many ways are there to choose to these numbers?

A very simplified version of this game is Lotto $1-49$, where players choose 1 number from 49. There are 49 choices.

Note that the probability (the odds) of winning Lotto $1-49$ is $1 / 49$. (one choice divided by the total number of choices)

Consider Lotto 2-49, where you have to pick 2 numbers from 49.
A tempting but wrong guess would be 49×48 choices.

Suppose choice 1 is 42 , and choice 2 is 18 . That is equivalent to choice 1 is 18 and choice 2 is 42 , so 49×48 double counts all possibilities. The actual answer is $49 \times 48 / 2$!.

Combinations

For lotto 6-49, players choose 6 numbers from 1 to 49.

How many ways are there to choose to these numbers?

Solution: $49 \times 48 \times 47 \times 46 \times 45 \times 44 / 6!=13,983,816$.

This can also be written as:

$$
\binom{49}{6}=\frac{49!}{43!6!}
$$

and pronounced 49 choose 6 .

What is the probability that any single choice is the winning number?

1/13,983,816
The current price of a Lotto 6-49 card is $\$ 3$.
The "fair" prize for choosing the winning numbers should be $\$ 41,951,448$.

The actual prize this week (Jan. 6, 2016) is $\$ 5,000,000$.

