CISC-102 Winter 2016 Lecture 3

- Homework every week.
- Not handed in no grades.
- Quizzes based on homework.
- Friday class: Homework day.
- Go over current week's homework. (Answer your questions)
- Go over prior week's solutions.

Readings

Read sections 1.1, 1.2, 1.3, and 1.4 of Schaum's Outline of Discrete Mathematics. Read sections 1.1, 1.2 and 1.3 of Discrete Mathematics Elementary and Beyond.

The readings for week 1 and homework 1.

Seating Arrangements

There is a large table at the party and Alice wants to experience every possible seating arrangement. How many ways can 7 people sit at a table?

This "seating arrangement question" is equivalent to asking for the number of different ways to order 7 people.

Number of ways to order 1 person? 1.
Number of ways to order 2 people? $(1,2)(2,1)$. 2*1
Number of ways to order 3 people? $(3,1,2)$
(3,2,1)
$(1,3,2)(2,3,1)(1,2,3)(2,13) .3 * 2 * 1$
Number of ways to order 4 people?
Guess: $4 * 3 * 2 * 1=4$!

Permutations

There are n ! ways to order n distinct objects
Recall n ! (n factorial) is given by the expression:

$$
n!=n \times(n-1) \times(n-2) \times \ldots \times 1
$$

Lottery Tickets

Lotto 6-49, players choose 6 numbers from 1 to 49.

How many ways are there to choose to these numbers?

A very simplified version of this game is Lotto $1-49$, where players choose 1 number from 49. There are 49 choices.

Note that the probability (the odds) of winning Lotto $1-49$ is $1 / 49$. (one choice divided by the total number of choices)

Consider Lotto 2-49, where you have to pick 2 numbers from 49.
A tempting but wrong guess would be 49×48 choices.

Suppose choice 1 is 42 , and choice 2 is 18 . That is equivalent to choice 1 is 18 and choice 2 is 42 , so 49×48 double counts all possibilities. The actual answer is $49 \times 48 / 2$!.

Combinations

For lotto 6-49, players choose 6 numbers from 1 to 49.

How many ways are there to choose to these numbers?

Solution: $49 \times 48 \times 47 \times 46 \times 45 \times 44 / 6!=13,983,816$.

This can also be written as:

$$
\binom{49}{6}=\frac{49!}{43!6!}
$$

and pronounced 49 choose 6 .

What is the probability that any single choice is the winning number?

1/13,983,816
The current price of a Lotto 6-49 card is $\$ 3$.
The "fair" prize for choosing the winning numbers should be $\$ 41,951,448$.

The actual prize this week (Jan. 6, 2016) is $\$ 5,000,000$.

Set Operators

Operators on sets are "union" and "intersection".
 Definitions:

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

Logical Operators

$p \wedge q$ pronounced p and q

Both p and q have to be true for the compound proposition p and q to be true.
$p \vee q$ pronounced p or q
At least one of p or q must be true for the compound proposition p or q to be true.

We can rewrite our definition for set union and set intersection using logical operators as follows:

$$
\begin{aligned}
& A \cup B=\{x: x \in A \vee x \in B\} \\
& A \cap B=\{x: x \in A \wedge x \in B\}
\end{aligned}
$$

Venn Diagrams

Useful for providing intuitive insight.

Note the rectangle surrounding the circles denotes the Universe U.
$A \cup B=\{x: x \in A \vee x \in B\}$

$A \cap B=\{x: x \in A \wedge x \in B\}$

For example:
Suppose A is the set of guitars and B is the set of red musical instruments.

- An element x is in the set of A union B if it is a guitar or if it is a red musical instrument.
- An element of x is in the set of A intersection B if x is red and x is a guitar.

The complement of a set A written A^{c} is defined as:

$$
A^{c}=\{x \mid x \notin A\}
$$

The relative complement of a set B with respect to A , sometimes called the difference is:

$$
A \backslash B=\{x \mid x \in A, x \notin B\}
$$

(The relative complement is sometimes written as $\mathrm{A}-\mathrm{B}$.)

The symmetric difference of sets A and B :

$$
A \oplus B=(A \cup B) \backslash(A \cap B) \quad \text { or } \quad A \oplus B=(A \backslash B) \cup(B \backslash A)
$$

The symmetric difference consists of elements that are in A or in B but not in both.

$$
A \oplus B=(A \cup B) \backslash(A \cap B)
$$

$$
A \oplus B=(A \backslash B) \cup(B \backslash A)
$$

Problems

1.4 Let $\mathbf{U}=\{1,2, \ldots, 9\}$ be the universal set, and let

$$
\begin{array}{lll}
A=\{1,2,3,4,5\}, & C=\{5,6,7,8,9\}, & E=\{2,4,6,8\}, \\
B=\{4,5,6,7\}, & D=\{1,3,5,7,9\}, & F=\{1,5,9\} .
\end{array}
$$

Find: $(a) A \cup B$ and $A \cap B ;(b) A \cup C$ and $A \cap C ;(c) D \cup F$ and $D \cap F$.
(a) $A^{\mathrm{C}}, B^{\mathrm{C}}, D^{\mathrm{C}}, E^{\mathrm{C}} ; \quad$ (b) $A \backslash B, B \backslash A, D \backslash E ; \quad$ (c) $A \oplus B, C \oplus D, E \oplus F$.

