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Lecture 6

Principle of Inclusion and Exclusion

The Principle of Inclusion and Exclusion can be stated as follows:

Theorem: Suppose A and B are finite sets. Then:

|A ∪ B| = |A| + |B| - |A ∩ B|
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This generalizes to a formula for determining the cardinality of the union 
of three sets. 

Corollary: Suppose A, B, and C are finite sets. Then:

|A ∪ B ∪ C | = |A| + |B| + |C| - |A ∩ B| - |A ∩ C| - |B ∩ C| + |A ∩ B ∩ C|

                    

Consider a collection of  40 people where each of them is wearing 
something that is red or blue or green such that:

20 wear something blue,  
20 wear something  red, 
20 wear something  green
10 wear red and blue, 10 wear red and green, 10 wear blue and green. 

How many people in the class are wearing all 3 colours?
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Theorem: The proposition P(n), the sum of the first n odd numbers is n2 
for all natural numbers n.

Preliminaries: 

• The kth odd number can be written as 2k-1.
e.g.1 1 = 2 ×1-1, 3 =2×2-1, 5=2×3-1 etc2.

• Definition: A proposition is a statement that is either true or false. 
e.g. The earth is flat. The moon is made of cheese.

• A proposition denoted by symbols P(n) are propositions having to do 
with all numbers of value n. 

• Terminology and notation: If we say that proposition P(n) is true for 
all natural numbers n, then we mean that: P(1) ∧ P(2) ∧ P(3) ∧ ... is 
true. That is the logical “and” of all of these propositions is true. The 
symbol ∀ is used to denote for all.
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1exempli gratia are Latin words meaning “for example”

2 et cetera are Latin words meaning “and so on”



Principle of Mathematical Induction 

A proposition is defined as a statement that is either true or false. We 
will at times make a declarative statement as a proposition and then 
proceed to prove that it is true. Alternately we may provide an example 
(called a counterexample ) showing that the proposition is false.

Let P be a proposition defined on the positive integers N; that is, P(n) is 
either true or false for each n 2 N. Suppose P has the following two 
properties: 
(i) P(1) is true.
(ii) P(k+1) is true whenever P(k) is true. 

Then by the principle of Mathematical Induction P(n) is true for every 
positive integer n 2 N.

Mathematical induction is by far the most useful tool for 
proving results in computing. 

Note: Step (i) may be replaced by some natural number b > 1 and then 
the principle of mathematical induction would hold for all natural 
numbers greater than or equal to b.
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Example: The sum of the first n odd numbers is n2.

Let’s try it for some small values of n.
n = 1 (1 = 12), n = 2 (1+ 3 = 4 = 22), 
n = 3 (1 + 3 + 5 = 9 = 32)
This is NOT A PROOF! These simply show that the propositions P(1), 

P(2) and P(3) are true.

This fact will be useful for proving that the sum of the first n odd 
numbers is n2.
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Theorem: The proposition P(n), the sum of the first n odd numbers is n2 
for all natural numbers n.

Proof:
Base case: P(1) 1 = 12, so P(1), the base case is true.
Induction hypothesis: Assume P(k) is true where k is any arbitrary  

integer greater than or equal to 1. 
                                       That is 1 + 3 + 5 + ... + 2k-1 = k2.

Induction Step: Consider the sum of the first k+1 odd numbers. 

1 + 3 + 5 … + 2k-1 + 2k+1 = k2 + 2k+1 ( because P(k) is assumed true )
            = (k+1)(k+1) ( factor )
                                             = (k+1)2

Therefore, we have shown that the proposition P(k) true implies that 
P(k+1) is true. So by the principle of mathematical induction we 
conclude that P(n) is true for all natural numbers n.                         ⧠
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As an analogy think of an unending sequence of dominoes. You can be 
sure that all will fall if:
1. The first one falls. (P(1))
2. And if the kth one falls it will knock over the k+1st, that is, P(k) true 
implies that P(k+1) is also true. 
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Handshaking revisited: If you recall we observed that the number of 
handshakes between n people is given by n(n-1)/2.
We can make this notion formal by proving it by using mathematical 
induction.

Preliminaries: Suppose we know the number of handshakes between k 
people, is the quantity Q, then the number of handshakes for k+1 people 
is Q + (k), that is, the new person shakes hands with the first k people.
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Theorem:  The proposition P(n), the number of handshakes for n ≥ 2 
people is n(n-1)/2.
Proof: 
Base: P(2) For 2 people we have 1 handshake = 2(1)/2 = 1.
Induction Hypothesis: P(k), for k people the number of handshakes is 
k(k-1)/2.
Induction Step: ( Goal: Show that the number of handshakes with k+1) 
people is (k+1)(k)/2 ) For k+1 people the number of handshakes is the 
number of handshakes with k people plus k more handshakes, that is, the 
k+1st person shakes hands with all the other k people. Therefore using 
the induction assumption we have:

The number of handshakes with k+1 people is:

k(k-1)/2 + k.

We now massage this expression until it fits the statement of the 
theorem.

k(k-1)/2 + k = ( k2 – k )/2 + k (multiply k(k-1))

                      = (k2 – k + 2k) / 2 (obtain common denominator)

                      =  (k2 + k)/2 (add -k + 2k)

                      =  k(k+1)/2 (factor k from k2 + k to reach goal.)

                      

Therefore, we have shown that P(k) implies P(k+1) and by the principle 
of mathematical induction we conclude that P(n) is true for natural 
numbers n ≥ 2. ⧠
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