CISC-102 Winter 2016 Lecture 7

Sigma notation

The big greek letter Sigma is used to represent a sequence of sums. The expression above can be pronounced "sum i for i equal 1 to n. This sum can also be written as:

 $\sum_{i=1}^{n} i$

$$1 + 2 + 3 + \dots + n$$
.

Principle of Mathematical Induction

Let P be a proposition defined on the positive integers \mathbb{N} ; that is, P(*n*) is either true or false for each $n \in \mathbb{N}$. Suppose P has the following two properties:

- (i) P(1) is true.
- (ii) P(k+1) is true whenever P(k) is true.

Then by the principle of Mathematical Induction P(n) is true for every positive integer $n \in \mathbb{N}$.

Theorem: The proposition P(n), the sum of the first *n* odd numbers is n^2 for all natural numbers *n*.

Proof:

Base case: $P(1) = 1^2$, so P(1), the base case is true. **Induction hypothesis:** Assume P(k) is true where k is any arbitrary integer greater than or equal to 1. That is $1 + 3 + 5 + ... + 2k-1 = k^2$.

Induction Step: (Goal: We need to show that the sum of the first k+1 odd numbers is equal to $(k+1)^2$, that is, $1+3+5 \dots + 2k+1 = (k+1)^2$)

Consider the sum of the first k+1 odd numbers.

$$\frac{1+3+5...+2k-1}{(k+1)(k+1)(k+1)(k+1)} + \frac{k^2}{(k+1)^2} + \frac{k^2$$

Therefore, we have shown that the proposition P(k) true implies that P(k+1) is true. So by the principle of mathematical induction we conclude that P(n) is true for all natural numbers n.

We can rewrite the previous proof using sigma notation.

Theorem: The proposition P(n), the sum of the first *n* odd numbers is n^2 for all natural numbers *n*.

Proof:

Base case: P(1) $1 = 1^2$, so P(1), the base case is true. **Induction hypothesis:** Assume P(k) is true where k is any arbitrary integer greater than or equal to 1. That is, $\sum_{i=1}^{k} (2i - 1) = k^2$

Induction Step: (Goal: We need to show that the sum of the first k+1 odd numbers is equal to $(k+1)^2$, that is,

$$\sum_{i=1}^{k+1} (2i-1) = (k+1)^2$$

Consider the sum of the first k+1 odd numbers.

$$\sum_{i=1}^{k+1} (2i-1) = \sum_{i=1}^{k} (2i-1) + 2k + 1$$

= $k^2 + 2k + l$ (because P(k) is assumed true)
= $(k+1)(k+l)$ (factor)
= $(k+1)^2$

Therefore, we have shown that the proposition P(k) true implies that P(k+1) is true. So by the principle of mathematical induction we conclude that P(n) is true for all natural numbers n.

Let P(n) be the proposition that a binary string of length *n* has 2^n different values.

Preliminaries: The key to proving this result is noticing that adding an additional binary bit to a bit string doubles the total number of values. To see why, assume that you know how many different values can be stored using k bits, numbered 0..k, and collect all those values in the set S. Now consider a k+1 bit string. For every k bit value stored in S we can get two distinct k+1 bit values, one with bit k+1 set to 0 and the other with bit k+1 set to 1.

for example: 8 values using 3 bits are:

 $000 \ 001 \ 010 \ 011 \ 100 \ 101 \ 110 \ 111$

With 4 bits we get 16 values as follows:

0000 0001 0010 0011 0100 0101 0110 0111

1000 **1**001 **1**010 **1**011 **1**100 **1**101 **1**110 **1**111

Theorem: P(n), a binary string of length n stores 2^n different values. Proof:

Base: P(1) is true, because 1 bit stores values 0 and 1.

Induction Hypothesis: Assume P(k) is true, that is, a binary string with k bits stores 2^k different values, for $k \ge 1$.

Induction Step: (Goal: Show that P(k+1) is true that is a binary string of length k+1 stores 2^{k+1} different values.)

By the induction hypothesis we know that a binary string with k bits stores 2^k different values.

By the preliminary discussion we saw that adding an additional bit to a binary number doubles the storable values. So we have:

$$(2^k) 2 = 2^{k+1}$$

storable values in a binary string with k+1 bits.

Therefore, P(k) implies P(k+1), and by the principle of mathematical induction we conclude that P(n) is true for all natural numbers n. \Box

A template for proving a theorem by mathematical induction.

Text in **bold** is the same for every proof. The *italicized* text needs to be customized for each proof. Plain text is commentary.

Base: Insert the *appropriate base case*, and verify that it is true. **Induction Hypothesis: Assume that P(k) is true**, that is, insert the *appropriate statement for the proposition P(k)*.

Induction Step: (GOAL: insert the *appropriate statement for the proposition* P(k+1)) NOTE: Stating the goal explicitly is not a necessity, however, it helps the reader and the writer of the proof keep track of what is to be expected.

Argument that P(k) true implies that P(k+1) is true. This is where you need to use your own creativity and technical mathematics ability to attain the stated goal.

Therefore, P(k) implies P(k+1), and by the principle of mathematical induction we conclude that P(n) is true for *the* appropriate range of values.