CISC-102

Winter 2016
Lecture 7

Sigma notation

$$
\sum_{i=1}^{n} i
$$

The big greek letter Sigma is used to represent a sequence of sums. The expression above can be pronounced "sum i for i equal 1 to n. This sum can also be written as:

$$
1+2+3+\ldots+n
$$

Principle of Mathematical Induction

Let P be a proposition defined on the positive integers \mathbb{N}; that is, $\mathrm{P}(n)$ is either true or false for each $n \in \mathbb{N}$. Suppose P has the following two properties:
(i) $\mathrm{P}(1)$ is true.
(ii) $\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true.

Then by the principle of Mathematical Induction $\mathrm{P}(n)$ is true for every positive integer $n \in \mathbb{N}$.

Theorem: The proposition $\mathrm{P}(\mathrm{n})$, the sum of the first n odd numbers is n^{2} for all natural numbers n.
Proof:
Base case: $\mathbf{P}(\mathbf{1}) 1=1^{2}$, so $\mathrm{P}(1)$, the base case is true.
Induction hypothesis: Assume $\mathrm{P}(\mathrm{k})$ is true where k is any arbitrary integer greater than or equal to 1 .
That is $1+3+5+\ldots+2 \mathrm{k}-1=\mathrm{k}^{2}$.
Induction Step: (Goal: We need to show that the sum of the first $\mathrm{k}+1$ odd numbers is equal to $(k+1)^{2}$, that is, $\left.1+3+5 \ldots+2 \mathrm{k}+1=(\mathrm{k}+1)^{2}\right)$

Consider the sum of the first $\mathrm{k}+1$ odd numbers.

$$
\begin{aligned}
1+3+5 \ldots+2 \mathrm{k}-1+2 \mathrm{k}+1 & =\underline{\mathrm{k}^{2}}+2 \mathrm{k}+1(\text { because } \mathrm{P}(\mathrm{k}) \text { is assumed true }) \\
& =(\mathrm{k}+1)(\mathrm{k}+1)(\text { factor }) \\
& =(\mathrm{k}+1)^{2}
\end{aligned}
$$

Therefore, we have shown that the proposition $\mathrm{P}(\mathrm{k})$ true implies that $\mathrm{P}(\mathrm{k}+1)$ is true. So by the principle of mathematical induction we conclude that $\mathrm{P}(\mathrm{n})$ is true for all natural numbers n .

We can rewrite the previous proof using sigma notation.
Theorem: The proposition $\mathrm{P}(\mathrm{n})$, the sum of the first n odd numbers is n^{2} for all natural numbers n.
Proof:
Base case: $\mathbf{P}(\mathbf{1}) 1=1^{2}$, so $P(1)$, the base case is true.
Induction hypothesis: Assume $\mathrm{P}(\mathrm{k})$ is true where k is any arbitrary integer greater than or equal to 1 . That is,
$\sum_{i=1}^{k}(2 i-1)=k^{2}$
Induction Step: (Goal: We need to show that the sum of the first $\mathrm{k}+1$ odd numbers is equal to $(\mathrm{k}+1)^{2}$, that is,

$$
\left.\sum_{i=1}^{k+1}(2 i-1)=(k+1)^{2}\right)
$$

Consider the sum of the first $\mathrm{k}+1$ odd numbers.

$$
\begin{aligned}
\sum_{i=1}^{k+1}(2 i-1) & =\sum_{i=1}^{k}(2 i-1)+2 k+1 \\
& =k^{2}+2 k+1(\text { because } \mathrm{P}(\mathrm{k}) \text { is assumed true }) \\
& =(k+1)(k+1)(\text { factor }) \\
& =(k+1)^{2}
\end{aligned}
$$

Therefore, we have shown that the proposition $\mathrm{P}(\mathrm{k})$ true implies that $P(k+1)$ is true. So by the principle of mathematical induction we conclude that $\mathrm{P}(\mathrm{n})$ is true for all natural numbers n .

Let $\mathrm{P}(n)$ be the proposition that a binary string of length n has 2^{n} different values.

Preliminaries: The key to proving this result is noticing that adding an additional binary bit to a bit string doubles the total number of values. To see why, assume that you know how many different values can be stored using k bits, numbered $0 . . \mathrm{k}$, and collect all those values in the set S . Now consider a $\mathrm{k}+1$ bit string. For every k bit value stored in S we can get two distinct $\mathrm{k}+1$ bit values, one with bit $\mathrm{k}+1$ set to 0 and the other with bit $\mathrm{k}+1$ set to 1 .
for example: 8 values using 3 bits are:

$$
000 \quad 001 \quad 010 \quad 011 \quad 100 \quad 101 \quad 110 \quad 111
$$

With 4 bits we get 16 values as follows:
00000001001000110100010101100111

10001001101010111100110111101111

Theorem: $\mathrm{P}(\mathrm{n})$, a binary string of length n stores 2^{n} different values. Proof:
Base: $\mathrm{P}(1)$ is true, because 1 bit stores values 0 and 1 .
Induction Hypothesis: Assume $\mathrm{P}(\mathrm{k})$ is true, that is, a binary string with k bits stores 2^{k} different values, for $\mathrm{k} \geq 1$.
Induction Step: (Goal: Show that $\mathrm{P}(\mathrm{k}+1)$ is true that is a binary string of length $\mathrm{k}+1$ stores $2^{\mathrm{k}+1}$ different values.)

By the induction hypothesis we know that a binary string with k bits stores 2^{k} different values.

By the preliminary discussion we saw that adding an additional bit to a binary number doubles the storable values. So we have:

$$
\left(2^{\mathrm{k}}\right) 2=2^{\mathrm{k}+1}
$$

storable values in a binary string with $\mathrm{k}+1$ bits.
Therefore, $\mathrm{P}(\mathrm{k})$ implies $\mathrm{P}(\mathrm{k}+1)$, and by the principle of mathematical induction we conclude that $\mathrm{P}(\mathrm{n})$ is true for all natural numbers n .

A template for proving a theorem by mathematical induction.
Text in bold is the same for every proof. The italicized text needs to be customized for each proof. Plain text is commentary.

Base: Insert the appropriate base case, and verify that it is true. Induction Hypothesis: Assume that $\mathbf{P}(\mathbf{k})$ is true, that is, insert the appropriate statement for the proposition $P(k)$.
Induction Step: (GOAL: insert the appropriate statement for the proposition $P(k+1)$) NOTE: Stating the goal explicitly is not a necessity, however, it helps the reader and the writer of the proof keep track of what is to be expected.

Argument that $P(k)$ true implies that $P(k+1)$ is true. This is where you need to use your own creativity and technical mathematics ability to attain the stated goal.

Therefore, $P(k)$ implies $P(k+1)$, and by the principle of mathematical induction we conclude that $\mathbf{P}(\mathbf{n})$ is true for the appropriate range of values.

