## CISC-102 <br> Winter 2016 <br> Lecture 8

## Relations: See chapter 2. of Schaum's

An ordered pair of elements $a, b$ is written as $(a, b)$.
NOTE: Mathematical convention distinguishes between
"( )" brackets -- order is important -- and -- "\{ \}" -- not ordered.

Example: $\{1,2\}=\{2,1\}$, but $(1,2) \neq(2,1)$.

## Product sets

Let A and B be two arbitrary sets. The set of all ordered pairs $(\mathrm{a}, \mathrm{b})$ where $\mathrm{a} \in \mathrm{A}$ and $\mathrm{b} \in \mathrm{B}$ is called the product or Cartesian product ${ }^{1}$ or cross product of A and B.

The cross product is denoted as:

$$
A \times B=\{(a, b): a \in A, b \in B\}
$$

and is pronounced " A cross B ".

It is common to denote $A \times A$ as $A^{2}$.

One example of a product set is $\mathbb{R}^{2}$, that is the product of the Reals, or the two dimensional real plane or Cartesian plane -- x and y coordinates.

[^0]
## Examples

Let $\mathrm{A}=\{1,2,3\}, \mathrm{B}=\{4,5,6\}$.
$\mathrm{A} \times \mathrm{B}=\{(1,4),(1,5),(1,6),(2,4),(2,5),(2,6)$,
$(3,4),(3,5),(3,6)\}$.
$\{(1,4),(2,6)\} \subseteq \mathrm{A} \times \mathrm{B}$.
$(2,5) \in A \times B$.
$\varnothing \subseteq \mathrm{A} \times \mathrm{B}$.

Let $\mathrm{A}=\{1,2,3\}$
$\mathrm{A}^{2}=\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)$,
$(3,3)\}$
$\{(1,1),(2,1),(2,3)\} \subseteq \mathrm{A}^{2}$.
$(1,1) \in \mathrm{A}^{2}$.

## Relations

Definition: Let A and B be arbitrary sets. A binary relation, or simply a relation from A to B is a subset of $\mathrm{A} \times \mathrm{B}$.

Example: Suppose $A=\{1,3,6\}$ and $B=\{1,4,6\}$
$A \times B=\{(a, b): a \in A$, and $b \in B\}$

$$
\begin{aligned}
=\{ & (1,1),(1,4),(1,6),(3,1),(3,4),(3,6),(6,1), \\
& (6,4)(6,6)\}
\end{aligned}
$$

Any subset of $A \times B$ is a relation from $A$ to $B$.

Example: Consider the relation $\leq$ on $\mathrm{A} \times \mathrm{B}$ where A and $B$ are defined above.

We can define the relation as:
$\{(\mathrm{a}, \mathrm{b}): \mathrm{a} \in \mathrm{A}$, and $\mathrm{b} \in \mathrm{B}, \mathrm{a} \leq \mathrm{b}\}$

The subset of $\mathrm{A} \times \mathrm{B}$ in this relation are the pairs:
$\{(1,1),(1,4),(1,6),(3,4),(3,6),(6,6)\}$

That is, a pair $(\mathrm{a}, \mathrm{b}) \in \mathrm{A} \times \mathrm{B}$ is in the relation $\leq$ whenever $\mathrm{a} \leq \mathrm{b}$.

## Vocabulary

When we have a relation on $\mathrm{S} \times \mathrm{S}$ (which is a very common occurrence) we simply call it a relation on S , rather than a relation on $\mathrm{S} \times \mathrm{S}$.

Let $A=\{1,2,3,4\}$, we can define the following relations on A.
$\mathrm{R}_{1}=\{(1,1),(1,2),(2,3),(1,3),(4,4)\}$
$\mathrm{R}_{2}=\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\}$
$\mathrm{R}_{3}=\{(1,3),(2,1)\}$
$\mathrm{R}_{4}=\varnothing$
$\mathrm{R}_{5}=\mathrm{A} \times \mathrm{A}=\mathrm{A}^{2}$ (How many elements are there in $\mathrm{R}_{5}$ ?)

## Properties of relations on a set $A$

Reflexive: A relation $R$ is reflexive if $(a, a) \in R$ for all $a \in$
A.

Let $\mathrm{A}=\{1,2,3,4\}$.
Which of the following relations on A are reflexive?
$\mathrm{R}_{1}=\{(1,1),(1,2),(2,3),(1,3),(4,4)\}$
$\mathrm{R}_{2}=\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\}$
$\mathrm{R}_{3}=\{(1,3),(2,1)\}$
$\mathrm{R}_{4}=\varnothing$
$\mathrm{R}_{5}=\mathrm{A} \times \mathrm{A}=\mathrm{A}^{2}$

Symmetric: A relation $R$ is symmetric if

$$
\text { whenever }\left(a_{1}, a_{2}\right) \in R \text { then }\left(a_{2}, a_{1}\right) \in R \text {. }
$$

Let $A=\{1,2,3,4\}$.
Which of the following relations on A are symmetric?
$\mathrm{R}_{1}=\{(1,1),(1,2),(2,3),(1,3),(4,4)\}$
$\mathrm{R}_{2}=\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\}$
$\mathrm{R}_{3}=\{(1,3),(2,1)\}$
$\mathrm{R}_{4}=\varnothing$
$\mathrm{R}_{5}=\mathrm{A} \times \mathrm{A}=\mathrm{A}^{2}$

Antisymmetric: A relation R is antisymmetric if whenever $\left(a_{1}, a_{2}\right) \in R$ and $\left(a_{2}, a_{1}\right) \in R$, then $a_{1}=a_{2}$.

Let $A=\{1,2,3,4\}$.
Which of the following relations on A are antisymmetric?

$$
\begin{aligned}
& \mathrm{R}_{1}=\{(1,1),(1,2),(2,3),(1,3),(4,4)\} \\
& \mathrm{R}_{2}=\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\} \\
& \mathrm{R}_{3}=\{(1,3),(2,1)\} \\
& \mathrm{R}_{4}=\varnothing \\
& \mathrm{R}_{5}=\mathrm{A} \times \mathrm{A}=\mathrm{A}^{2}
\end{aligned}
$$

NOTE: There are relations that are neither symmetric nor antisymmetric or both symmetric and antisymmetric.

$$
\begin{aligned}
& \mathrm{S}_{1}=\varnothing \text { (Both) } \\
& \mathrm{S}_{2}=\{(1,1),(2,2),(3,3),(4,4)\} \text { (Both) } \\
& \mathrm{S} 3=\{(1,2),(2,1),(1,3)\} \text { (Neither) }
\end{aligned}
$$

# Transitive: A relation $\mathbf{R}$ is transitive if 

whenever $\left(a_{1}, a_{2}\right) \in R$ and $\left(a_{2}, a_{3}\right) \in R$ then $\left(a_{1}, a_{3}\right) \in R$.

Let $A=\{1,2,3,4\}$.
Which of the following relations on A are transitive?

$$
\begin{aligned}
& \mathrm{R}_{1}=\{(1,1),(1,2),(2,3),(1,3),(4,4)\} \\
& \mathrm{R}_{2}=\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\} \\
& \mathrm{R}_{3}=\{(1,3),(2,1)\} \\
& \mathrm{R}_{4}=\varnothing \\
& \mathrm{R}_{5}=\mathrm{A} \times \mathrm{A}=\mathrm{A}^{2}
\end{aligned}
$$

Let $\mathrm{A}=\{1,2,3,4\}$, we can define the following relations on A.
$R_{1}=\{(1,1),(1,2),(2,3),(1,3),(4,4)\}$.
NOT reflexive: (Because $(2,2)$ is missing) .
NOT symmetric: (Because the presence of $(1,2)$ requires $(2,1)$ ).
antisymmetric: (No occurrence of a pair, of ordered pairs, of the form $(a, b),(b, a))$.
transitive: (for every occurrence of the pair $\left(a_{1}, a_{2}\right) \in R_{1}$ and $\left(a_{2}, a_{3}\right) \in R_{1}$ then $\left.\left(a_{1}, a_{3}\right) \in R_{1}\right)$.

# $\mathrm{R}_{2}=\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\}$ reflexive. 

## symmetric.

NOT antisymmetric.
transitive.
$\mathrm{R}_{3}=\{(1,3),(2,1)\}$.
NOT reflexive.
NOT symmetric.
antisymmetric.
NOT transitive.
$\mathrm{R}_{4}=\varnothing$.
NOT reflexive.

## symmetric.

antisymmetric.
transitive.

$$
\mathrm{R}_{5}=\mathrm{A} \times \mathrm{A}=\mathrm{A}^{2} .
$$

## reflexive.

## symmetric.

NOT antisymmetric.
transitive.

## Consider the relation

# $\mathrm{R}_{6}=\{(1,1),(1,2),(2,1),(2,3),(2,2),(3,3)\}$ <br> NOT reflexive: 

NOT symmetric:
NOT antisymmetric:
NOT transitive:

# Consider the relations $<, \leq$, and $=$ on the Natural 

 numbers. (less than, less than or equal to, equal to)The relation $<$ on the Natural numbers $\{(a, b): a, b \in N, a$ $<\mathrm{b}\}$ is:

NOT reflexive, NOT symmetric, antisymmetric, transitive.

The relation $\leq$ is on the Natural numbers $\{(\mathrm{a}, \mathrm{b}): \mathrm{a}, \mathrm{b}: \in$
$\mathrm{N}, \mathrm{a} \leq \mathrm{b}\}$ is:
reflexive,
NOT symmetric, antisymmetric, transitive.

A relation R is called a partial order if R is: reflexive, antisymmetric, and transitive,
so the $\leq$ relation on the natural numbers is a partial order.

The relation $=$ on the Natural numbers $\{(a, b): a, b: \in N, a$ $=\mathrm{b}\}$ is:
reflexive, symmetric, transitive.

A relation $R$ is called an equivalence relation if $R$ is reflexive, symmetric, and transitive, so the $=$ relation on the Natural numbers is an equivalence relation.

## Functions

An important special case of a relation, is a function.
A relation from A to B is a function if every element
$\mathrm{a} \in \mathrm{A}$ is assigned a unique element of B.
For example: A relation from A to B is $\underline{\boldsymbol{a n y}}$ subset of
$A \times B$, any entry in the table below can potentially be an element of a relation, and any entry can be omitted.

|  | b1 | b2 | b3 | b4 | b5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| a1 |  |  |  |  |  |
| a2 |  |  |  |  |  |
| a3 |  |  |  |  |  |
| a4 |  |  |  |  |  |

However, a function would require that exactly one entry per row of the table is present.

## Vocabulary

Suppose $f$ is a function from the set A to the set B . Then we say that A is the domain of $f$ and B is the codomain of $f$. (Synonyms for codomain are: target set \& range)

## Notation

Let f denote a function from A to B , then we write:

$$
f: \mathrm{A} \rightarrow \mathrm{~B}
$$

which is pronounced " $f$ is a function from A to $\mathrm{B} "$, or " $f$ maps A into B".

If $a \in \mathrm{~A}$, and $b \in \mathrm{~B}$ we can write:

$$
f(a)=b
$$

to denote that the function $f$ maps the element a to b .

## More Vocabulary

We can say that $b$ is the image of $a$ under $f$.

## More notation.

A function can be expressed by a formula (written as an equation, as illustrated by the following example:

$$
f(x)=x^{2} \text { for } x \in \mathbb{R}
$$

In this example $f$ is the function and $x$ is the variable.
Sometimes we can express the image of a variable (the independent variable) by a dependent variable as follows:

$$
y=x^{2}
$$

## Injective(one-to-one), Surjective(onto), Bijective(one-

 to-one and onto) functions.A function $f: \mathrm{A} \rightarrow \mathrm{B}$ is a one-to-one function if for every $\mathrm{a} \in \mathrm{A}$ there is a distinct image in B . A one-to-one function is also called an injective function or an injection. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $f(x)=2^{x}$.
$f(x)=2^{x}$ is one-toone because there is a distinct image for every
$x \in \mathbb{R}$, that is if $2^{x}=$

$2^{y}$ then $x=y$.

A function $f: \mathrm{A} \rightarrow \mathrm{B}$ is an onto function if
every $b \in \mathrm{~B}$ is an image. An onto function is also called a surjective function or a surjection.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $f(x)=x^{3}-x$.
$f(x)=x^{3}-x$ is onto because the pre-image of any real number $y$ is the solution set of the cubic polynomial equation $x^{3}-x-y=0$ and every cubic polynomial with real coefficients has at least one real root.


Note: $f(x)=x^{3}-x=x\left(x^{2}-1\right)$ is not one-to-one because $f(x)=0$ for $x=-1, x=+1, x=0$

Note: $f(x)=2^{x}$ is not onto because $2^{x}>0$ for all $x \in \mathbb{R}$.

A function that is both one-to-one and onto is called a bijective function or a bijection.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $f(x)=2 x$
$f(x)=2 x$ is one-to-one because we get a distinct image for every pre-image.
$f(x)=2 x$ is onto
because every y $\in \mathbb{R}$ is
an image. So $f(x)=2 x$ is a bijection.


Bijective functions are also called invertible functions.
That is suppose that $f$ is a bijective function on the set A .
Then $f^{-1}$ denotes the inverse of the function f , meaning that whenever
$f(x)=y$ we have $f^{-1}(y)=x$.
In our previous example we saw that function $f(x)=2 x$ is
a bijective function. In this case we can define
$f^{-1}(x)=x / 2$, so we get $f^{-1}(2 x)=x$.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $f(x)=x^{2}$


Observe that $f(x)=x^{2}$ is a function because every $\mathrm{x} \in \mathbb{R}$ has a distinct image. However, $f(x)=x^{2}$ is neither one-toone (because $f(x)=f(-x)$ ) or onto $(f(x) \geq 0)$.

## Composition of functions

Notation: Suppose we have functions $f: \mathrm{A} \rightarrow \mathrm{B}$
and $g: \mathrm{B} \rightarrow \mathrm{C}$, then the composition of $f$ and $g$ written as $g \circ f$ is defined as:
$(g \circ f)(a)=g(f(a)) .($ NOTE: carefully notice the order of f and $g$ on the two sides of the equation.)

So for example let $f: \mathbb{R} \rightarrow \mathbb{R}$ be $f(x)=x^{2}$ and let $g: \mathbb{R} \rightarrow \mathbb{R}$ be $g(x)=5 x$. Then an example of a composition of $f$ and $g$ could be:
$(g \circ f)(2)=g(f(2))=g(4)=16$


[^0]:    ${ }^{1}$ Réne Descartes French philosopher mathematician (1596-1650)

