CISC-102
 Winter 2016
 Lecture 9

Properties of the Integers

Let $\mathrm{a}, \mathrm{b} \in \mathbb{Z}$ then

1. if $\mathrm{c}=\mathrm{a}+\mathrm{b}$ then $\mathrm{c} \in \mathbb{Z}$
2. if $c=a-b$ then $c \in \mathbb{Z}$
3. if $c=(a)(b)$ then $c \in \mathbb{Z}$
4. if $c=a / b$ then $c \in \mathbb{Q}$

If $\mathrm{a} \& \mathrm{~b}$ are integers the quotient a / b may not be an integer. For example if $\mathrm{c}=1 / 2$, then c is not an integer. On the other hand with $c=6 / 3$ then c is n integer.

We can say that there exists integers a, b such that $\mathrm{c}=\mathrm{a} / \mathrm{b}$ is not an integer.

We can also say that for all integers a, b we have $\mathrm{c}=\mathrm{a} / \mathrm{b}$ is a rational number.

Divisibility

Let $\mathrm{a}, \mathrm{b} \in \mathbb{Z}, \mathrm{a} \neq 0$.
If $\mathrm{c}=\frac{b}{a}$ is an integer,
or alternately if $\mathrm{c} \in \mathbb{Z}$ such that $\mathrm{b}=\mathrm{ca}$ then we say that a divides b or equivalently,
b is divisible by a, and this is written

$$
a \mid b
$$

NOTE: Recall long division:

Referring to the long division example, $b=32$, is the divisor $\mathrm{a}=487$ is the dividend. The quotient $\mathrm{q}=15$ and the remainder $\mathrm{r}=7$.
In this case b does not divide a or equivalently a is not divisible by b .

This can be notated as:

$$
b \nmid a
$$

and we can write $\mathrm{a}=\mathrm{bq}+\mathrm{r}$ or, $487=(32)(15)+7$

Division Algorithm Theorem

Let $\mathrm{a}, \mathrm{b} \in \mathbb{Z}, \mathrm{b} \neq 0$ there exists $\mathrm{q}, \mathrm{r} \in \mathbb{Z}$, such that:

$$
\mathrm{a}=\mathrm{bq}+\mathrm{r}, 0 \leq \mathrm{r}<|\mathrm{b}|
$$

NOTE: The remainder in the Division Algorithm Theorem is always positive.

Notation
The absolute value of b denoted by is defined as:

$$
\begin{aligned}
|\mathrm{b}| & =\mathrm{b} \text { if } \mathrm{b} \geq 0 \\
\text { and }|\mathrm{b}| & =-\mathrm{b} \text { if } \mathrm{b}<0 .
\end{aligned}
$$

Therefore for values
$\mathrm{a}=22, \mathrm{~b}=7$, and $\mathrm{a}=-22, \mathrm{~b}=-7$ we get
$22=(7)(3)+1$
but
$-22=(-7)(4)+6$.

Divisibility

Suppose on the other hand that we have $\mathrm{a}=217$ and $\mathrm{b}=$
7. We have $217=(31)(7)+0$ so we conclude that $b \mid a$.

31
$7 \mid 217$
$\underline{21}$
07
$\underline{7}$
$\underline{0}$

Divisibility Theorems.

Let $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbb{Z}$. If $\mathrm{a} \mid \mathrm{b}$ and $\mathrm{b} \mid \mathrm{c}$ then $\mathrm{a} \mid \mathrm{c}$.

Proof:

Suppose $\mathrm{a} \mid \mathrm{b}$ then there exists an integer j such that
(1) $b=a j$

Similarly if blc then there exists an integer k such that
(2) $c=b k$

Replace b in equation (2) with aj to get
(3) $c=a j k$

Thus we have proved that if $\mathrm{a} \mid \mathrm{b}$ and $\mathrm{b} \mid \mathrm{c}$ then $\mathrm{a} \mid \mathrm{c} . \square$

Divisibility Theorems.

Let $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbb{Z}$. If $\mathrm{a} \mid \mathrm{b}$ then $\mathrm{a} \mid \mathrm{bc}$.

Proof:

Since $a \mid b$ there exists an integer j such that
$b=a j$, and $b c=a j c$ for all (any) $c \in \mathbb{Z}$.
It should be obvious that $\mathrm{a} \left\lvert\, \mathrm{ajc}\left(\frac{a j c}{a}=\mathrm{jc}\right.$ is an integer $)\right.$
so a $\mid \mathrm{bc} . \square$

Divisibility Theorems.

Let $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbb{Z}$. If $\mathrm{a} \mid \mathrm{b}$ and $\mathrm{a} \mid \mathrm{c}$. Then $\mathrm{a} \mid(\mathrm{b}+\mathrm{c})$ and $\mathrm{a} \mid(\mathrm{b}-\mathrm{c})$.

Proof:

Since $a \mid b$ there exist $a j \in \mathbb{Z}$ such that $b=a j$.

Since $\mathrm{a} \mid \mathrm{c}$ there exist $\mathrm{a} \mathrm{k} \in \mathbb{Z}$ such that $\mathrm{c}=\mathrm{ak}$.

Therefore $b+c=(a j+a k)=a(j+k)$.
Obviously $\mathrm{a} \mid \mathrm{a}(\mathrm{j}+\mathrm{k})$ so $\mathrm{a} \mid(\mathrm{b}+\mathrm{c})$.

Similarly a $\mathrm{a}(\mathrm{j}-\mathrm{k})$ so $\mathrm{a} \mid(\mathrm{b}-\mathrm{c}) . \square$

Notation

The absolute value of a denoted by |a|
is defined as:

$$
\begin{aligned}
|a| & =a \text { if } a \geq 0 \\
\text { and }|a| & =-a \text { if } a<0 .
\end{aligned}
$$

Divisibility Theorems.

If $\mathrm{a} \mid \mathrm{b}$ then $|\mathrm{a}| \leq|\mathrm{b}|$.
If $\mathrm{a} \mid \mathrm{b}$ and $\mathrm{b} \mid \mathrm{a}$ then $|\mathrm{a}|=|\mathrm{b}|$.
If $\mathrm{a} \mid 1$ then $|\mathrm{a}|=1$.

Prime Numbers

Definition: A positive integer $\mathrm{p}>1$ is called a prime number if its only divisors are $1,-1$, and $\mathrm{p},-\mathrm{p}$.

The first 10 prime numbers are:
$2,3,5,7,11,13,17,19,23,29, \ldots$
Definition: If an integer $\mathrm{c}>2$ is not prime, then it is composite. Every composite number c can be written as a product of two integers a, b such that $\mathrm{a}, \mathrm{b} \notin\{1,-1, \mathrm{c},-\mathrm{c}\}$.

Determining whether a number, n, is prime or composite is difficult computationally. A simple method (which is in essence of the same computational difficulty as more sophisticated methods) checks all integers $\mathrm{k}, 2 \leq \mathrm{k} \leq \sqrt{ } \mathrm{n}$ to determine divisibility.

Example: Let $\mathrm{n}=143$
2 does not divide 143
3 does not divide 143
4 does not divide 143
5 does not divide 143
6 does not divide 143
7 does not divide 143
8 does not divide 143
9 does not divide 143
10 does not divide 143
11 divides $143,11 \times 13=143$

