CISC-102 WINTER 2016

HOMEWORK 1 SOLUTIONS

PROBLEMS

(1) Rewrite the following statements using set notation, and then give an example by listing members of sets that match the description. For example: A is a subset of C. Answer: $A \subseteq C$. $A = \{1, 2\}$, $C = \{1, 2, 3\}$.

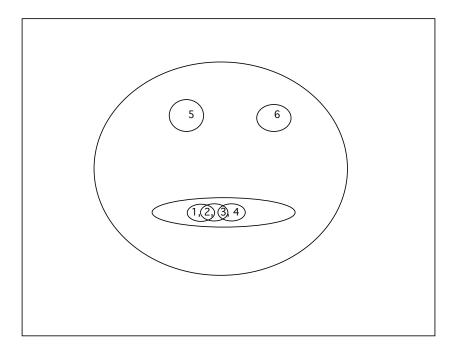
There are many different solutions to these questions. I have shown several possibilities.

- (a) The element 1 is not a member of (the set) A. $1 \notin A$. $A = \{2, 4\}$.
- (b) The element 5 is a member of B. $5 \in B$. $B = \{5,6\}$.
- (c) A is not a subset of D. A $\not\subseteq$ D. A = {2, 4} and D = {42, 18}.
- (d) E and F contain the same elements. $E=F,\,E=F=\{7\},\,E\subseteq F \text{ and } F\subseteq E.$
- (e) A is the set of integers larger than three and less than 12. A = $\{x : x \in \mathbb{Z}, 3 < x < 12\}$. A = $\{4, 5, 6, 7, 8, 9, 10, 11\}$.
- (f) B is the set of even natural numbers less than 15. B = $\{2x : x \in \mathbb{N}, x < 8\}$. B = $\{2,4,6,8,10,12,14\}$. Some books define the naturals as including 0, and 0 is a multiple of 2 so it's even. Then B = $\{0,2,4,6,8,10,12,14\}$. However, for the rest of this course we will assume that $0 \notin \mathbb{N}$.
- (g) C is the set of natural numbers x such that 4 + x = 3. C = $\{x : x \in \mathbb{N}, 4 + x = 3\}$. C = \emptyset .
- (2) $A = \{x : 3x = 6\}$. A = 2, true or false? $A = \{2\}$. $A \neq 2$, so the statement is false.
- (3) Which of the following sets are equal $\{r, s, t\}$, $\{t, s, r\}$, $\{s, r, t\}$, $\{t, r, s\}$. They are all equal. The order in which elements are written in a set is not important, unless ellipses "..." are used to denote a sequence. For example $x = \{1, 2, ..., 10\}$.

1

- (4) Consider the sets $\{4,2\}$, $\{x: x^2 6x + 8 = 0\}$, $\{x: x \in \mathbb{N}, x \text{ is even}, 1 < x < 5\}$. Which one of these sets is equal to $\{4,2\}$? They are all equal.
- (5) Which of the following sets are equal: \emptyset , $\{\emptyset\}$, $\{0\}$. None are equal. $\{\emptyset\}$ is a set within a set. 0 is a number not a set, and definitely not the empty set.
- (6) Explain the difference between $A \subseteq B$, and $A \subset B$, and give example sets that satisfy the two statements.

 $A \subseteq B$ is pronounced as "A is a subset of B" implying that A is a subset of B that may also be equal to A. $A = B = \{1\}$ and $A \subseteq B$. $A \subset B$ is pronounced "A is a proper subset of B" implying that A is strictly a subset of B. $A = \{1\}, B = \{1, 2\}$ and $A \subset B$.


- (7) Consider the following sets $A = \{1, 2, 3, 4\}, B = \{2, 3, 4, 5, 6, 7\}, C = \{3, 4\}, D = \{4, 5, 6\}, E = \{3\}.$
 - (a) Let X be a set such that $X \subseteq A$ and $X \subseteq B$. Which of the sets A, B, C, D, E could be X?

X could be the set $C = \{3, 4\}$ or the set $E = \{3\}$.

- (b) Let $X \nsubseteq D$ and $X \nsubseteq B$. Which of the sets A, B, C, D, E above could be X? Set A is the only set from the list that is not a subset of D and not a subset of B.
- (c) Find the smallest set M that contains all five sets. $\mathbf{M} = \{1.2, 3.4, 5.6, 7\}$
- (d) Find the largest set N that is a subset of all five sets. $N = \emptyset$
- (8) Is an "element of a set", a special case of a "subset of a set"?

 No, an element of a set is not a subset.
- (9) List all of the subsets of the set $\{1, 2, 3\}$. $\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}$.
- (10) List all of the subsets of the set $\{2,3\}$. $\emptyset, \{2\}, \{3\}, \{2,3\}$.
- (11) List all of the subsets of the set $\{1, 2, 3\}$ containing 1. $\{1\}, \{1, 2\}, \{1, 3\}, \{1, 2, 3\}.$
- (12) Let $A = \{1, 2, 3, 4\}$. List all the subsets of A containing 1 but not containing 4. $\{1\}, \{1, 2\}, \{1, 3\}, \{1, 2, 3\}$.

(13) Consider the sets $A = \{1,2,3,4,5,6\}$, $B = \{1,2,3,4\}$, $C = \{5\}$, $D = \{6\}$, $E = \{1,2\}$, $F = \{2,3\}$, $G = \{3,4\}$, and U is the set of Natural numbers the universe for this collection of sets. Draw a Venn diagram representing this collection of sets.

