CISC-102 WINTER 2016

HOMEWORK 1 SOLUTIONS

Problems

(1) Rewrite the following statements using set notation, and then give an example by listing members of sets that match the description. For example: A is a subset of C. Answer: $A \subseteq C . A=\{1,2\}, C=\{1,2,3\}$.

There are many different solutions to these questions. I have shown several possibilities.
(a) The element 1 is not a member of (the set) A .
$1 \notin \mathrm{~A} . \mathrm{A}=\{2,4\}$.
(b) The element 5 is a member of B .
$5 \in \mathrm{~B} . \mathrm{B}=\{5,6\}$.
(c) A is not a subset of D.
$\mathrm{A} \nsubseteq \mathrm{D} . \mathrm{A}=\{2,4\}$ and $\mathrm{D}=\{42,18\}$.
(d) E and F contain the same elements.
$\mathrm{E}=\mathrm{F} . \mathrm{E}=\mathrm{F}=\{7\} . \mathrm{E} \subseteq \mathrm{F}$ and $\mathrm{F} \subseteq \mathrm{E}$.
(e) A is the set of integers larger than three and less than 12 .
$\mathrm{A}=\{x: x \in \mathbb{Z}, 3<x<12\} . \mathrm{A}=\{4,5,6,7,8,9,10,11\}$.
(f) B is the set of even natural numbers less than 15 .
$\mathrm{B}=\{2 x: x \in \mathbb{N}, x<8\} . \mathrm{B}=\{2,4,6,8,10,12,14\}$. Some books define the naturals as including 0 , and 0 is a multiple of 2 so it's even. Then $\mathrm{B}=$ $\{0,2,4,6,8,10,12,14\}$. However, for the rest of this course we will assume that $0 \notin \mathbb{N}$.
(g) C is the set of natural numbers x such that $4+x=3$.
$\mathrm{C}=\{x: x \in \mathbb{N}, 4+x=3\} . \mathrm{C}=\emptyset$.
(2) $A=\{x: 3 x=6\} . A=2$, true or false? $\mathrm{A}=\{2\} . \mathrm{A} \neq 2$, so the statement is false.
(3) Which of the following sets are equal $\{r, s, t\},\{t, s, r\},\{s, r, t\},\{t, r, s\}$. They are all equal. The order in which elements are written in a set is not important, unless ellipses "..." are used to denote a sequence. For example $x=\{1,2, \ldots, 10\}$.
(4) Consider the sets $\{4,2\},\left\{x: x^{2}-6 x+8=0\right\},\{x: x \in \mathbb{N}, x$ is even, $1<x<5\}$. Which one of these sets is equal to $\{4,2\}$?
They are all equal.
(5) Which of the following sets are equal: $\emptyset,\{\emptyset\},\{0\}$. None are equal. $\{\emptyset\}$ is a set within a set. 0 is a number not a set, and definitely not the empty set.
(6) Explain the difference between $A \subseteq B$, and $A \subset B$, and give example sets that satisfy the two statements.
$A \subseteq B$ is pronounced as " A is a subset of B " implying that A is a subset of B that may also be equal to A . $A=B=\{1\}$ and $A \subseteq B . A \subset B$ is pronounced "A is a proper subset of B " implying that A is strictly a subset of B. $A=\{1\}, B=\{1,2\}$ and $A \subset B$.
(7) Consider the following sets $A=\{1,2,3,4\}, B=\{2,3,4,5,6,7\}, C=\{3,4\}, D=$ $\{4,5,6\}, E=\{3\}$.
(a) Let X be a set such that $X \subseteq A$ and $X \subseteq B$. Which of the sets A, B, C, D, E could be X?
X could be the set $C=\{3,4\}$ or the set $E=\{3\}$.
(b) Let $X \nsubseteq D$ and $X \nsubseteq B$. Which of the the sets A, B, C, D, E above could be X? Set A is the only set from the list that is not a subset of D and not a subset of B.
(c) Find the smallest set M that contains all five sets.
$\mathrm{M}=\{1,2,3,4,5,6,7\}$
(d) Find the largest set N that is a subset of all five sets. $N=\emptyset$
(8) Is an "element of a set", a special case of a "subset of a set"?

No, an element of a set is not a subset.
(9) List all of the subsets of the set $\{1,2,3\}$.
$\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}$.
(10) List all of the subsets of the set $\{2,3\}$.
$\emptyset,\{2\},\{3\},\{2,3\}$.
(11) List all of the subsets of the set $\{1,2,3\}$ containing 1 .
$\{1\},\{1,2\},\{1,3\},\{1,2,3\}$.
(12) Let $A=\{1,2,3,4\}$. List all the subsets of A containing 1 but not containing 4 . $\{1\},\{1,2\},\{1,3\},\{1,2,3\}$.
(13) Consider the sets $A=\{1,2,3,4,5,6\}, \mathrm{B}=\{1,2,3,4\}, \mathrm{C}=\{5\}, D=\{6\}, E=\{1,2\}$, $F=\{2,3\}, G=\{3,4\}$, and U is the set of Natural numbers the universe for this collection of sets. Draw a Venn diagram representing this collection of sets.

