CISC-102 Winter 2016

Homework 2 Solutions

Problems

1. Illustrate DeMorgan's Law $(A \cap B)^{c}=A^{c} \cup B^{c}$ using Venn diagrams.

(a)

(b)

(c)

(d)

Figure 1: $\quad(A \cap B)$ is shown in (a), and (c) and (d) illustrate B^{c} and A^{c} respectively. Finally (b) shows that $(A \cap B)^{c}=A^{c} \cup B^{c}$

Figure 2: $A \subseteq B$ is shown on the left, and $A \subseteq B \subseteq C$ is shown on the right.
2. Observe that $A \subseteq B$ has the same meaning as $A \cap B=A$. Draw a Venn diagram to illustrate this fact.

See Figure 2. If $A \subseteq B$ then every element $x \in A$ is also an element of B, which in turn implies that $A \cap B=A$.
3. Use a Venn diagram to show that if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

See Figure 2. $A \subseteq B$ implies that every element of A is also in B , $x \in A$ implies $x \in B$. Similarly $B \subseteq C$ implies that every element of B is also in C , and $y \in B$ implies $y \in C$. Thus $A \subseteq C$.
4. Use the principle of exclusion and inclusion to show that $|A \cup B|+\mid A \cap$ $B|=|A|+|B|$. (It may help your understanding if you first explore an example such as $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{3,4\}$).
By the principle of exclusion and inclusion we have $|A|+|B|-|A \cap B|=$ $|A \cup B|$. These quantities are non-negative integers (the set of nonnegative integers are $\{0\} \cup \mathbb{N})$ so if we subtract $|A \cap B|$ to the right and left side of the equation, we get the desired result, as shown below.

$$
|A \cup B|+|A \cap B|-|A \cap B|=|A|+|B|-|A \cap B|
$$

Now perform the subtraction on the left to get the principle of exclusion and inclusion.

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

5. What are the cardinalities of the following sets?
(a) $\mathrm{A}=\{$ winter, spring, summer, fall $\} .|A|=4$.
(b) $\mathrm{B}=\{x: x \in \mathbb{Z}, 0<x<7\}$. $|B|=6$.
(c) $\mathrm{P}(\mathrm{B})$, that is, the power set of $\mathrm{B} .|P(B)|=2^{6}=64$.
(d) $\mathrm{C}=\{x: x \in \mathbb{N}, x$ is even $\}$. This set has infinitely many elements.
6. Suppose that we have a sample of 100 students at Queen's who take at least one of the following language courses, French-101, Spanish-101, German-101. Also suppose that 65 take French-101, 45 take German101, 42 take Spanish 101, 20 take French-101 and German-101, 25 take French-101and Spanish-101, and 15 take German-101 and Spanish-101.
(a) How many students take all three language courses?

Let F, S, and G denote the sets of students taking French Spanish and German respectively. The principle of inclusion and exclusion tells us that:
$|F \cup S \cup G|=|F|+|S|+|G|-|F \cap S|-|S \cap G|-|F \cap G|+|F \cap S \cap G|$ The problem statement gives us values for each quantity in the equation except for $|F \cap S \cap G|$. We can now simply fill in the numbers and solve for $|F \cap S \cap G|$, as follows:

$$
100=65+42+45-25-15-20+|F \cap S \cap G|
$$

So we conclude that $|F \cap S \cap G|=8$

S

Figure 3: Language Courses Venn Diagram
(b) Draw a Venn diagram representing these 100 students and fill in the regions with the correct number.
(c) How many students take exactly 1 of these courses? Using the Venn diagram we can deduce that $28+10+18=56$ students take exactly one of the language courses.
(d) How many students take exactly 2 of these courses? Using the Venn diagram we can deduce that $17+12+7=36$ students take exactly two courses.
7. Let $\mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}\}$. Determine which of the following are partitions of S :
(a) $\mathrm{P} 1=\{\{\mathrm{a}, \mathrm{c}, \mathrm{e}\},\{\mathrm{b}\},\{\mathrm{d}, \mathrm{g}\}\}$. No, because the element f is missing from the union of the sets.
(b) $\mathrm{P} 2=\{\{\mathrm{a}, \mathrm{b}, \mathrm{e}, \mathrm{g}\},\{\mathrm{c}\},\{\mathrm{d}, \mathrm{f}\}\}$. Yes. The union of the sets is S, and the pairwise intersections of the sets are empty.
(c) $\mathrm{P} 3=\{\{\mathrm{a}, \mathrm{e}, \mathrm{g}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{b}, \mathrm{e}, \mathrm{f}\}\}$. No, because the intersection $\{\mathrm{a}, \mathrm{e}, \mathrm{g}\}$ $\cap\{b, e, f\}$ is not the empty set.
(d) $\mathrm{P} 4=\{\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}\}\}$. Yes, this is technically a partition, but a very uninteresting one.
8. Recall that the union operation is associative, that is $A \cup(B \cup C)=$ $(A \cup B) \cup C$. Show that the relative complement set operation is not associative, that is, $A \backslash(B \backslash C)=(A \backslash B) \backslash C$, is incorrect for some sets $\mathrm{A}, \mathrm{B}, \mathrm{C}$. (Note if relative complement is associative then the equation must be true for all sets A, B, C.)
Let $\mathrm{A}=\{1,2,3\} \mathrm{B}=\{1,2\}$ and $\mathrm{C}=\{2,3\} . \quad A \backslash(B \backslash C)=\{2,3\}$ and $(A \backslash B) \backslash C=\emptyset$.

