CISC-102 FALL 2016

HOMEWORK 3 SOLUTIONS

Problems

(1) Let $\left\{A_{i}: i \in \mathbb{N}\right\}$ denote an arbitrary indexed class of sets. Let $k \in \mathbb{N}$ Show that

$$
\bigcap_{i \in \mathbb{N}} A_{i} \subseteq A_{k} \subseteq \bigcup_{i \in \mathbb{N}} A_{i}
$$

Let

$$
A_{\text {int }}=\bigcap_{i \in \mathbb{N}} A_{i},
$$

and observe that it is the intersection of all of the indexed sets.
Therefore, if $x \in A_{\text {int }}$ then $x \in A_{i}$ for all $i \in \mathbb{N}$.
This implies that $A_{\text {int }} \subseteq A_{i}$ for all $i \in \mathbb{N}$, and in particular $A_{\text {int }} \subseteq A_{k}$ for some fixed $k \in \mathbb{N}$.
Let

$$
A_{u n i}=\bigcup_{i \in \mathbb{N}} A_{i} .
$$

Therefore, if $x \in A_{i}$ for all $i \in \mathbb{N}$ then $x \in A_{u n i}$. This implies that $A_{i} \subseteq A_{\text {uni }}$ for all $i \in \mathbb{N}$, and in particular $A_{k} \subseteq A_{\text {uni }}$ for some fixed $k \in \mathbb{N}$.
(2) Prove using mathematical induction that the sum of the first n natural numbers is equal to $\frac{n(n+1)}{2}$. This can also be stated as:
Prove that the proposition $\mathrm{P}(n)$,

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

is true for all $n \in \mathbb{N}$
Base: for $n=1,1=\frac{1(1+1)}{2}$
Induction hypothesis: Assume that $\mathrm{P}(k)$ is true, that is:

$$
\sum_{i=1}^{k} i=\frac{k(k+1)}{2} .
$$

for $k \geq 1$.
Induction step: The goal is to show that $\mathrm{P}(k+1)$ is true, that is:

$$
\sum_{i=1}^{k+1} i=\frac{(k+1)(k+2)}{2}
$$

Consider the sum

$$
\begin{aligned}
\sum_{i=1}^{k+1} i & =\sum_{i=1}^{k} i+(k+1)(\text { arithmetic }) \\
& =\frac{k(k+1)}{2}+(k+1)(\text { Use the induction hypothesis }) \\
& =\frac{k^{2}+k+2 k+2}{2}(\text { get common denominator and add }) \\
& =\frac{k^{2}+3 k+2}{2}(\text { add } \mathrm{k}+2 \mathrm{k}) \\
& =\frac{(k+1)(k+2)}{2}(\text { factor to arrive at goal })
\end{aligned}
$$

Therefore, we have shown that the proposition $\mathrm{P}(k)$ true implies that $\mathrm{P}(k+1)$ is true. So by the principle of mathematical induction we conclude that $\mathrm{P}(n)$ is true for all natural numbers n.
(3) Prove using mathematical induction that the proposition $\mathrm{P}(n)$,

$$
\sum_{i=1}^{n} \frac{1}{2^{i}}=1-\frac{1}{2^{n}},
$$

is true, for all $n \in \mathbb{N}$.

Base: $\frac{1}{2}=1-\frac{1}{2}$.
Induction hypothesis: Assume that $\mathrm{P}(k)$ is true, that is:

$$
\sum_{i=1}^{k} \frac{1}{2^{i}}=1-\frac{1}{2^{k}}
$$

Induction step: The goal is to show that $\mathrm{P}(k+1)$ is true, that is,

$$
\sum_{i=1}^{k+1} \frac{1}{2^{i}}=1-\frac{1}{2^{k+1}}
$$

Consider the sum:

$$
\begin{aligned}
\sum_{i=1}^{k+1} \frac{1}{2^{i}} & =\sum_{i=1}^{k} \frac{1}{2^{i}}+\frac{1}{2^{k+1}}(\text { arithmetic }) \\
& =1-\frac{1}{2^{k}}+\frac{1}{2^{k+1}}(\text { Use the induction hypothesis }) \\
& =1+\frac{-2+1}{2^{k+1}} \text { (get common denominator) } \\
& =1-\frac{1}{2^{k+1}}(\text { add to arrive at goal })
\end{aligned}
$$

Therefore, we have shown that the proposition $\mathrm{P}(k)$ true implies that $\mathrm{P}(k+1)$ is true. So by the principle of mathematical induction we conclude that $\mathrm{P}(n)$ is true for all natural numbers n.
(4) Prove using mathematical induction that the proposition $\mathrm{P}(n)$, the number of values storable in a decimal string (a decimal string uses values, $0,1, \ldots, 9$) of length n is 10^{n}.
Base: For $n=1$ we can store values $0 \ldots 9$ or 10^{1} values.
Induction hypothesis: Assume that $\mathrm{P}(k)$ is true, that is, we can store 10^{k} different values in a decimal string of length k.
Induction step: Our goal is to show that we can store 10^{k+1} different values in a decimal string of length $k+1$.
Observe that when we add one new decimal digit to a decimal string of length k we can realize 10 times the values that we got with a
decimal string of length k. Therefore, using the induction hypothesis, we can realize $10 \times 10^{k}=10^{k+1}$ different values.

Therefore, we have shown that the proposition $\mathrm{P}(k)$ true implies that $\mathrm{P}(k+1)$ is true. So by the principle of mathematical induction we conclude that $\mathrm{P}(n)$ is true for all natural numbers n.
(5) Prove using mathematical induction that the proposition $\mathrm{P}(n)$, the number of values storable in a string using k different symbols of length n is k^{n}.
Base: For $n=1$ we can store values $0 \ldots \mathrm{k}$ or k^{1} values.
Induction hypothesis: Assume that $\mathrm{P}(j)$ is true, that is, we can store k^{j} different values in a string of length j. (Note: We are forced to use a different letter, we use " j ", because k is already used.)
Induction step: Our goal is to show that we can store k^{j+1} different values in a string of length $j+1$ using k different symbols .
Observe that when we add one new symbol to a string using k different symbols of length j we can realize k times the values that we got with a string of length j. Therefore, using the induction hypothesis, we can realize $k \times k^{j}=k^{j+1}$ different values.

Therefore, we have shown that the proposition $\mathrm{P}(j)$ true implies that $\mathrm{P}(j+1)$ is true. So by the principle of mathematical induction we conclude that $\mathrm{P}(n)$ is true for all natural numbers n.

