CISC-102 WINTER 2016

HOMEWORK 4 SOLUTIONS

Problems

- (1) Let $A = \{1, 2, 3\}$ and $B = \{a, b\}$.
 - (a) What is $A \times B$?

 $A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}.$

(b) What is $B \times A$?

$$B \times A = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}.$$

- (c) What is $(A \times B) \cup (B \times A)$? $(A \times B) \cup (B \times A) = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b), (a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}.$
- (d) What is $(A \times B) \cap (B \times A)$?

$$(A \times B) \cap (B \times A) = \emptyset.$$

(2) Suppose A is a set of m elements, and B is a set of n elements. How many elements are there in the product set $A \times B$? How many elements are there in the product set $B \times A$?

$$|A \times B| = |B \times A| = |A| \times |B| = m \times n.$$

- (3) Consider the following relations on the set $A = \{1, 2, 3\}$:
 - $R = \{(1,1), (1,2), (1,3), (3,3)\},\$
 - $S = \{(1,1), (1,2), (2,1), (2,2), (3,3)\},\$

- $T = \{(1,1), (1,2), (2,2), (2,3)\},\$
- $A \times A$.

Which of the relations above are antisymmetric?

R and T are antisymmetric.

(4) Explain why each of the following binary relations on the set $S = \{1, 2, 3\}$ is or is not an equivalence relation on S.

An equivalence relation is a relation that is reflexive, symmetric, and transitive.

- (a) $R = \{(1, 1), (1, 2), (3, 2), (3, 3), (2, 3), (2, 1)\}$ Not reflexive $\{$ because (2, 2) is missing $\}$, also not transitive $\{$ because (1, 3) is missing $\}$.
- (b) $R = \{(1,1), (2,2), (3,3), (2,1), (1,2), (3,2), (2,3), (3,1), (1,3)\}$ This is an equivalence relation.
- (c) $R = \{(1,1), (2,2), (3,3), (3,1), (1,3)\}$ This is an equivalence relation.
- (5) Let R be a relation on the set of Natural numbers such that $(a, b) \in$ R if $a \ge b$. Show that the relation R on N is a partial order.

A relation is a partial order if it is reflexive, antisymmetric, and transitive.

R is reflexive because $a \ge a$ for all natural numbers a.

R is antisymmetric because whenever $a \ge b$ and $b \ge a$ we have a = b.

R is transitive because whenever $a \ge b$ and $b \ge c$ we have $a \ge c$.

- (6) Determine whether the mappings from \mathbb{R} to \mathbb{R} shown below are or are not functions, and explain your decision.
 - (a) f(x) = 1/x.
 - f(0) is undefined so f(x) is not a function.
 - (b) $f(x) = \sqrt{x}$.

f(x) is undefined if x is negative so f(x) is not a function. Also if \sqrt{x} denotes positive and negative roots we don't have a unique image for positive real numbers.

- (c) f(x) = 3x 3. f(x) is uniquely defined for all $x \in \mathbb{R}$. So f(x) is a function.
- (7) Determine whether each of the following functions from R to R is a bijection, and explain your decision. HINT: Plotting these functions may help you with your decision.
 - (a) f(x) = 3x + 4f(x) is one-to-one and onto so it is a bijection.
 - (b) $f(x) = -x^2 + 2$

f(x) is not one-to-one because f(-a) = f(a) for any $a \in \mathbb{R}$. Furthermore f(x) is not onto because there is no $x \in \mathbb{R}$ with an image that is greater than 2.

(c) $f(x) = x^3 - x^2$ f(x) is not one-to-one because f(x) = 0 for x = 0 and x = 1.

FIGURE 1. (a) 1/x (b) \sqrt{x} (c) 3x-3 (d) 3x+4 (e) $-x^2+2$ (f) x^3-x^2