# CISC-102 WINTER 2016 

## HOMEWORK 4 SOLUTIONS

## Problems

(1) Let $A=\{1,2,3\}$ and $B=\{a, b\}$.
(a) What is $A \times B$ ?

$$
A \times B=\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\} .
$$

(b) What is $B \times A$ ?

$$
B \times A=\{(a, 1),(a, 2),(a, 3),(b, 1),(b, 2),(b, 3)\} .
$$

(c) What is $(A \times B) \cup(B \times A)$ ?
$(A \times B) \cup(B \times A)=\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)$, $(a, 1),(a, 2),(a, 3),(b, 1),(b, 2),(b, 3)\}$.
(d) What is $(A \times B) \cap(B \times A)$ ?

$$
(A \times B) \cap(B \times A)=\emptyset .
$$

(2) Suppose A is a set of $m$ elements, and B is a set of $n$ elements. How many elements are there in the product set $A \times B$ ? How many elements are there in the product set $B \times A$ ?

$$
|A \times B|=|B \times A|=|A| \times|B|=m \times n .
$$

(3) Consider the following relations on the set $A=\{1,2,3\}$ :

- $R=\{(1,1),(1,2),(1,3),(3,3)\}$,
- $S=\{(1,1),(1,2),(2,1),(2,2),(3,3)\}$,
- $T=\{(1,1),(1,2),(2,2),(2,3)\}$,
- $A \times A$.

Which of the relations above are antisymmetric?
$R$ and $T$ are antisymmetric.
(4) Explain why each of the following binary relations on the set $S=$ $\{1,2,3\}$ is or is not an equivalence relation on $S$.
An equivalence relation is a relation that is reflexive, symmetric, and transitive.
(a) $R=\{(1,1),(1,2),(3,2),(3,3),(2,3),(2,1)\}$

Not reflexive $\{$ because $(2,2)$ is missing \}, also not transitive \{because ( 1,3 ) is missing $\}$.
(b) $R=\{(1,1),(2,2),(3,3),(2,1),(1,2),(3,2),(2,3),(3,1),(1,3)\}$

This is an equivalence relation.
(c) $R=\{(1,1),(2,2),(3,3),(3,1),(1,3)\}$

This is an equivalence relation.
(5) Let R be a relation on the set of Natural numbers such that $(a, b) \in$ R if $a \geq b$. Show that the relation R on $\mathbb{N}$ is a partial order.

A relation is a partial order if it is reflexive, antisymmetric, and transitive.

R is reflexive because $a \geq a$ for all natural numbers a.
R is antisymmetric because whenever $a \geq b$ and $b \geq a$ we have $a=b$.
R is transitive because whenever $a \geq b$ and $b \geq c$ we have $a \geq c$.
(6) Determine whether the mappings from $\mathbb{R}$ to $\mathbb{R}$ shown below are or are not functions, and explain your decision.
(a) $f(x)=1 / x$.
$f(0)$ is undefined so $f(x)$ is not a function.
(b) $f(x)=\sqrt{x}$.
$f(x)$ is undefined if $x$ is negative so $f(x)$ is not a function. Also if $\sqrt{x}$ denotes positive and negative roots we don't have a unique image for positive real numbers.
(c) $f(x)=3 x-3$.
$f(x)$ is uniquely defined for all $x \in \mathbb{R}$. So $f(x)$ is a function.
(7) Determine whether each of the following functions from $\mathbb{R}$ to $\mathbb{R}$ is a bijection, and explain your decision. HINT: Plotting these functions may help you with your decision.
(a) $f(x)=3 x+4$
$f(x)$ is one-to-one and onto so it is a bijection.
(b) $f(x)=-x^{2}+2$
$f(x)$ is not one-to-one because $f(-a)=f(a)$ for any $a \in \mathbb{R}$. Furthermore $f(x)$ is not onto because there is no $x \in \mathbb{R}$ with an image that is greater than 2.
(c) $f(x)=x^{3}-x^{2}$
$f(x)$ is not one-to-one because $f(x)=0$ for $x=0$ and $x=1$.


Figure 1. (a) $1 / x$ (b) $\sqrt{x}(\mathrm{c}) 3 x-3$ (d) $3 x+4$ (e) $-x^{2}+2$ ( f ) $x^{3}-x^{2}$

