CISC-102 WINTER 2016

HOMEWORK 5 SOLUTIONS

(1) Evaluate

(a)
$$|3 - 7| = |-4| = 4$$

(b) $|1 - 4| - |2 - 9| = |-3| - |-7| = -4$
(c) $|-6 - 2| - |2 - 6| = |-8| - |-4| = 4$

(2) Find the quotient q and remainder r, as given by the Division Algorithm theorem for the following examples. Recall we want to find r, 0 ≤ r < |b|, such that a = qb + r, where all values are integers.
(a) a = 500, b = 17. 500 = 29 × 17 + 7 so r = 7.
(b) a = -500, b = 17. -500 = -30 × 17 + 10 so r = 10.
(c) a = 500, b = -17. 500 = -29 * -17 + 7 so r = 7
(d) a = -500, b = -17 -500 = 30 × -17 + 10 so r = 10

(3) Show that
$$c|0$$
, for all $c \in \mathbb{Z}, c \neq 0$.
 $\frac{0}{c} = 0$ for all $c \in \mathbb{Z}, c \neq 0$. Note: $\frac{0}{0}$ is undefined.

(4) Let $a, b, c \in \mathbb{Z}$ such that c|a and c|b. Let r be the remainder of the division of b by a, that is there is a $q \in \mathbb{Z}$ such that $b = qa + r, 0 \leq r < |b|$. Show that under these condition we have c|r.

Since c|a and c|b we can write:

$$(1)a = cp_a$$
 and $b = cp_b$, such that $p_a, p_b \in \mathbb{Z}$.

So we can rewrite b = qa + r as:

$$cp_b = qcp_a + r$$

and this simplifies to:

$$c(p_b - qp_a) = r$$

Since $p_b - qb_a$ is an integer we can conclude that c|r.

(5) Let $a, b \in \mathbb{Z}$ such that 2|a. (In other words a is even.) Show that 2|ab.

This is just a special case of the divisibility theorem that states if c|a then for any integer b, c|ab

 $\mathbf{2}$

(6) Let $a \in \mathbb{Z}$ show that 3|a(a+1)(a+2), that is the product of three consecutive integers is divisible by 3.

Observe that we can write a = 3q + r where $r \in [0, 1, 2]$.

Case 0: If r = 0 a is divisible by 3 and since (a+1)(a+2) is an integer it follows that 3|a(a+1)(a+2).

Case 1: If r = 1, add 2 to both sides of the equation a = 3q + 1 to get a + 2 = 3q + 3 = 3(q + 1) thus a + 2 is divisible by 3 and since a(a + 1) is an integer it follows that 3|a(a + 1)(a + 2).

Case 2: If r = 2, add 1 to both sides of the equation a = 3q + 1 to get a + 1 = 3q + 3 = 3(q + 1) thus a + 1 is divisible by 3 and since a(a + 2) is an integer it follows that 3|a(a + 1)(a + 2).

(7) Let a be any integer. Let P(n) denote the proposition:

$$\sum_{i=0}^{n} a^{i} = \frac{a^{n+1} - 1}{a - 1}$$

Prove that P(n) is true for all integers $n \ge 0$. Although the first form of induction would suffice to prove this result, use the second form of induction.

Base: P(0): $a^0 = \frac{a-1}{a-1} = 1$.

Induction Hypothesis: We assume that P(j) is true for $j, 0 \le j \le k$, that is, $\sum_{i=0}^{j} a^i = \frac{a^{j+1}-1}{a-1}$ for all $j, 0 \le j \le k$.

Induction Step: (Our goal is to show that P(k+1) is true using the induction hypothesis, that is, $\sum_{i=0}^{k+1} a^i = \frac{a^{k+2}-1}{a-1}$.

$$\sum_{i=0}^{k+1} a^{i} = \sum_{i=0}^{k} a^{i} + a^{k+1}$$

$$= \frac{a^{k+1} - 1}{a - 1} + a^{k+1}$$

$$= \frac{a^{k+1} - 1 + (a - 1)a^{k+1}}{a - 1}$$

$$= \frac{a^{k+1} - 1 + a^{k+2} - a^{k+1}}{a - 1}$$

$$= \frac{a^{k+2} - 1}{a - 1}$$

We have proved that $P(0) \dots P(k)$ true imply that P(k+1) is true, so by the principle of mathematical induction we conclude that P(n) is true for all integers $n, n \ge 0$