CISC-102 WINTER 2016

HOMEWORK 5 SOLUTIONS

(1) Evaluate
(a) $|3-7|=|-4|=4$
(b) $|1-4|-|2-9|=|-3|-|-7|=-4$
(c) $|-6-2|-|2-6|=|-8|-|-4|=4$
(2) Find the quotient q and remainder r, as given by the Division Algorithm theorem for the following examples. Recall we want to find $r, 0 \leq r<|b|$, such that $a=$ $q b+r$, where all values are integers.
(a) $a=500, b=17$.

$$
500=29 \times 17+7 \text { so } r=7 .
$$

(b) $a=-500, b=17$.
$-500=-30 \times 17+10$ so $r=10$.
(c) $a=500, b=-17$.
$500=-29 *-17+7$ so $r=7$
(d) $a=-500, b=-17$
$-500=30 \times-17+10$ so $r=10$
(3) Show that $c \mid 0$, for all $c \in \mathbb{Z}, c \neq 0$.
$\frac{0}{c}=0$ for all $c \in \mathbb{Z}, c \neq 0$. Note: $\frac{0}{0}$ is undefined.
(4) Let $a, b, c \in \mathbb{Z}$ such that $c \mid a$ and $c \mid b$. Let r be the remainder of the division of b by a , that is there is a $q \in \mathbb{Z}$ such that $b=q a+r, 0 \leq r<|b|$. Show that under these condition we have $c \mid r$.

Since $c \mid a$ and $c \mid b$ we can write:

$$
\text { (1) } a=c p_{a} \text { and } b=c p_{b} \text {, such that } p_{a}, p_{b} \in \mathbb{Z} \text {. }
$$

So we can rewrite $b=q a+r$ as:

$$
c p_{b}=q c p_{a}+r
$$

and this simplifies to:

$$
c\left(p_{b}-q p_{a}\right)=r
$$

Since $p_{b}-q b_{a}$ is an integer we can conclude that $c \mid r$.
(5) Let $a, b \in \mathbb{Z}$ such that $2 \mid a$. (In other words a is even.) Show that $2 \mid a b$.

This is just a special case of the divisibility theorem that states if $c \mid a$ then for any integer $b, c \mid a b$
(6) Let $a \in \mathbb{Z}$ show that $3 \mid a(a+1)(a+2)$, that is the product of three consecutive integers is divisible by 3 .

Observe that we can write $a=3 q+r$ where $r \in 0,1,2$.
Case 0: If $r=0$ a is divisible by 3 and since $(a+1)(a+2)$ is an integer it follows that $3 \mid a(a+1)(a+2)$.

Case 1: If $r=1$, add 2 to both sides of the equation $a=3 q+1$ to get $a+2=3 q+3=3(q+1)$ thus $a+2$ is divisible by 3 and since $a(a+1)$ is an integer it follows that $3 \mid a(a+1)(a+2)$.

Case 2: If $r=2$, add 1 to both sides of the equation $a=3 q+1$ to get $a+1=3 q+3=3(q+1)$ thus $a+1$ is divisible by 3 and since $a(a+2)$ is an integer it follows that $3 \mid a(a+1)(a+2)$.
(7) Let a be any integer. Let $\mathrm{P}(n)$ denote the proposition:

$$
\sum_{i=0}^{n} a^{i}=\frac{a^{n+1}-1}{a-1}
$$

Prove that $\mathrm{P}(n)$ is true for all integers $n \geq 0$. Although the first form of induction would suffice to prove this result, use the second form of induction.
Base: $\mathrm{P}(0): a^{0}=\frac{a-1}{a-1}=1$.

Induction Hypothesis: We assume that $\mathrm{P}(j)$ is true for $j, 0 \leq j \leq k$, that is, $\sum_{i=0}^{j} a^{i}=\frac{a^{j+1}-1}{a-1}$ for all $j, 0 \leq$ $j \leq k$.

Induction Step: (Our goal is to show that $\mathrm{P}(k+1)$ is true using the induction hypothesis, that is, $\sum_{i=0}^{k+1} a^{i}=$ $\frac{a^{k+2}-1}{a-1}$.

$$
\begin{aligned}
\sum_{i=0}^{k+1} a^{i} & =\sum_{i=0}^{k} a^{i}+a^{k+1} \\
& =\frac{a^{k+1}-1}{a-1}+a^{k+1} \\
& =\frac{a^{k+1}-1+(a-1) a^{k+1}}{a-1} \\
& =\frac{a^{k+1}-1+a^{k+2}-a^{k+1}}{a-1} \\
& =\frac{a^{k+2}-1}{a-1}
\end{aligned}
$$

We have proved that $\mathrm{P}(0) \ldots \quad \mathrm{P}(\mathrm{k})$ true imply that $\mathrm{P}(\mathrm{k}+1)$ is true, so by the principle of mathematical induction we conclude that $\mathrm{P}(n)$ is true for all integers $n, n \geq 0$

