CISC-102 WINTER 2016

HOMEWORK 6 SOLUTIONS

(1) Prove, using the second (strong) form of mathematical induction that any integer value greater than 2 can be written as $3 a+4 b+5 c$, where a, b, c are non-negative integers, that is $a, b, c \in \mathbb{Z}, a, b, c \geq 0$. (HINT: You need to use 3 base cases, that is, verify that 3,4 and 5 can be written as $3 a+4 b+5 c$, where a, b, c are non-negative integers.)
We use the second form of mathematical induction.
Base: $3=3 \times 1+4 \times 0+5 \times 0$, and $4=3 \times 0+4 \times 1+5 \times 0$, and $5=3 \times 0+4 \times 0+5 \times 1$.
Induction Hypothesis: All values i such that, $2<i \leq k$ can be written as $3 a+4 b+5 c$, where a, b, c are non-negative integers.
Induction Step: Consider the value $k+1$, and the value k. By the induction hypothesis $k=3 a+4 b+5 c$ for non-zero integers a, b, c. There are 3 cases to consider.
Case 1: $a>0$ in the expression $k=3 a+4 b+5 c$, therefore $k+1=3(a-1)+4(b+1)+5 c$.
Case 2: $a=0, b>0$ in the expression $k=3 a+4 b+5 c$, therefore $k+1=4(b-1)+5(c+1)$.
Case 3: $a=0, b=0$, and $c>0$ in the expression $k=3 a+4 b+5 c$, therefore $k+1=3(a+2)+5(c-1)$.
(2) Let a, b, c be Integers.
(a) Prove that if $a \mid b$ and $b \mid c$ then $a \mid c$.
$a \mid b$ implies that there exists an integer p such that $b=p a$.
$b \mid c$ implies that there exists an integer q such that $c=q b$.
Putting the two equations above together we have $c=q p a$, and can conclude that $a \mid c$.
(b) Prove that if $a \mid b$ and $a \mid c$, then $a \mid(b+c)$.
$a \mid b$ implies that there exists an integer p such that $b=p a$.
$a \mid c$ implies that there exists an integer q such that $c=q a$.
Putting the two equations above together we have $b+c=p a+q a=a(p+q)$, and can conclude that $a \mid(b+c)$.
(c) Prove that if $a \mid b$ and $b \mid a$, then $|a|=|b|$, that is $a= \pm b$.
$a \mid b$ implies that there exists an integer p such that $b=p a$.
$b \mid a$ implies that there exists an integer q such that $a=q b$.
Putting the two equations above together we have $b=p q b$. Therefore the product $p q=1$. Since both p and q are integers we conclude that $p=q=1$, or $p=q=-1$. This in turn implies that $|a|=|b|$.
(3) Let $\mathrm{a}=1763$, and $\mathrm{b}=42$
(a) Find $\operatorname{gcd}(a, b)$. Show the steps used by Euclid's algorithm to find $\operatorname{gcd}(a, b)$.

$$
\begin{aligned}
& (1763)=41(42)+41 \\
& (42)=1(41)+1 \\
& (41)=41(1)+0 \\
& \operatorname{gcd}(1763,42)=\operatorname{gcd}(42,41)=\operatorname{gcd}(41,1)=\operatorname{gcd}(1,0)=1
\end{aligned}
$$

(b) Find integers x, y such that $\operatorname{gcd}(a, b)=a x+b y$

$$
\begin{aligned}
1 & =42-1(41) \\
& =42-1[1763-41(42)] \\
& =42(42)+(-1) 1763
\end{aligned}
$$

(c) Find $\operatorname{lcm}(a, b)$

$$
\operatorname{lcm}(\mathrm{a}, \mathrm{~b})=\frac{a b}{g c d(a, b)}=74046
$$

(4) Prove $\operatorname{gcd}(a, a+k)$ divides k.

Let $g=\operatorname{gcd}(a, a+k)$. Therefore $g \mid a$ and $g \mid a+k$, and this implies that $g \mid a+k-a$, or $g \mid k$.
(5) If a and b are relatively prime, that is $\operatorname{gcd}(a, b)=1$ then we can always find integers x, y such that $1=a x+b y$. This fact will be useful to prove the following proposition.
Suppose p is a prime such that $p \mid a b$, that is p divides the product $a b$, then $p \mid a$ or $p \mid b$.
We can look at two possible cases.
Case 1: $p \mid a$ and then we are done.
Case 2: $p \nmid a$, and since p is prime we can deduce that p and a are relatively prime. Therefore, there exist integers x, y such that

$$
1=a x+p y .
$$

Now multiply the left and right hand side of equation (1), by b to get:
(2)

$$
b=b a x+b p y .
$$

We know that $p \mid b a$ so $p \mid b a x$, and we can also see that $p \mid b p y$. Therefore, $p \mid(b a x+b p y)$, and by equation (2) we can conclude that $p \mid b$.

