CISC-102 WINTER 2016

HOMEWORK 7 SOLUTIONS

(1) Let $\mathrm{a}=2^{2} * 3 * 7^{2}$ and $\mathrm{b}=2 * 3^{2} * 7$
(a) Find $g=\operatorname{gcd}(a, b)$. Show how the prime factorization is helpful for finding gcd (a, b).
Given the prime factorization of a and b we can use the formula:

$$
\operatorname{gcd}(a, b)=2^{\min (2,1)} 3^{\min (1,2)} 7^{\min (1,2)}=2 * 3 * 7
$$

(b) Find $\operatorname{lcm}(a, b)$. Show how the prime factorization is helpful for finding lcm (a, b).
Given the prime factorization of a and b we can use the formula:

$$
\operatorname{lcm}(a, b)=2^{\max (2,1)} 3^{\max (1,2)} 7^{\max (1,2)}=2^{2} * 3^{2} * 7^{2}
$$

(2) Let a, b, m be positive integers, such that $a \equiv b(\bmod m)$. Show that this implies that there exists an integer q so that $a=b+q m$. For example: Suppose $a=4, b=8$
and $m=2$. Then this implies that there is an integer q such that $4=8+q 2$. In this example it is easy to see that $q=-2$.

If $a \equiv(b \bmod m)$ then by definition we have $m \mid(a-b)$.
Therefore, there exists an integer q such that:
(1)

$$
a-b=q m .
$$

Adding b to the left and right sides of equation (1) yields the desired result, that is: $a=b+q m$.
(3) A store selling menswear has, 3 kinds of jackets, 7 kinds of shirts, and 5 kinds of pants. How many choices are there for a single item? How many choices are there for one of each kind of clothing item.

There are $3+7+5=15$ choices for a single item. There are $3 \times 7 \times 5=105$ choices for one of each kind.
(4) Suppose we have 9 signal flags that are hung on a vertical flag pole, such that there are 4 identical red flags, 2 identical blue flags, and 3 identical green flags. How many different signals can be made using all 9 flags.
There are $\frac{9!}{4!2!3!}=1260$ different signals.
(5) How many different strings can you make using the letters TIMBITS?

There are $\frac{7!}{2!2!}$ different strings.
(6) A restaurant has 6 different deserts on the menu. How many ways are there to choose 1 desert? 2 different deserts? 3 different deserts?
There are $\binom{6}{1}=6$ ways to choose 1 desert.
There are $\binom{6}{2}=15$ ways to choose 2 different deserts.
There are $\binom{6}{3}=20$ ways to choose 3 different deserts.

