CISC-102 FALL 2017

HOMEWORK 5

Please work on these problems and be prepared to share your solutions with classmates in class next week. Assignments will **<u>not</u>** be collected for grading.

READINGS

Read sections 2.1, 2.2, 2.3, 11.1, 11.2, 11.3, 11.4, and 11.5 of *Schaum's Outline of Discrete Mathematics*.

Read section 6.1, and 6.2 of Discrete Mathematics Elementary and Beyond.

Problems

- (1) Consider the following relations on the set $A = \{1, 2, 3\}$:
 - $R = \{(1,1), (1,2), (1,3), (3,3)\},\$
 - $S = \{(1,1), (1,2), (2,1), (2,2), (3,3)\},\$
 - $T = \{(1,1), (1,2), (2,2), (2,3)\},\$
 - $A \times A$.

For each of these relations determine whether it is symmetric, antisymmetric, reflexive, or transitive.

- (2) Explain why each of the following binary relations on the set $S = \{1, 2, 3\}$ is or is not an equivalence relation on S.
 - (a) $R = \{(1,1), (1,2), (3,2), (3,3), (2,3), (2,1)\}$
 - (b) $R = \{(1,1), (2,2), (3,3), (2,1), (1,2), (3,2), (2,3), (3,1), (1,3)\}$

(c) $R = \{(1,1), (2,2), (3,3), (3,1), (1,3)\}$

- (3) Let R be a relation on the set of Natural numbers such that $(a, b) \in \mathbb{R}$ if $a \ge b$. Show that the relation R on N is a partial order.
- (4) Evaluate
 - (a) |3-7|

(b)
$$|1-4| - |2-9|$$

(c)
$$|-6-2|-|2-6|$$

- (5) Find the quotient q and remainder r, as given by the Division Algorithm theorem for the following examples.
 - (a) a = 500, b = 17
 - (b) a = -500, b = 17
 - (c) a = 500, b = -17
 - (d) a = -500, b = -17
- (6) Show that c|0, for all $c \in \mathbb{Z}, c \neq 0$.

HOMEWORK 5

- (7) Let $a, b, c \in \mathbb{Z}$ such that c|a and c|b. Let r be the remainder of the division of b by a, that is there is a $q \in \mathbb{Z}$ such that $b = qa + r, 0 \le r < |b|$. Show that under these condition we have c|r.
- (8) Let $a, b \in \mathbb{Z}$ such that 2|a. (In other words a is even.) Show that 2|ab.
- (9) Let $a \in \mathbb{Z}$ show that 3|a(a+1)(a+2), that is the product of three consecutive integers is divisible by 3.
- (10) Use induction to prove the following propositions.
 - (a) $n^3 + 2n$ is divisible by 3, for all $n \in \mathbb{N}, n \ge 1$.
 - (b) Show that any integer value greater than 2 can be written as 3a + 4b + 5c, where a, b, c are non-negative integers, that is $a, b, c \in \mathbb{Z}, a, b, c \ge 0$.
 - (c) Show that every Natural number n can be represented as a sum of distinct powers of 2. For example the number $42 = 32 + 8 + 2 = 2^5 + 2^3 + 2^1$.

 $\mathbf{2}$