CISC-102 FALL 2017

HOMEWORK 6

Assignments will not be collected for grading.
Readings
Read sections 11.6 of Schaum's Outline of Discrete Mathematics.
Read section 6.6 (Don't worry if the theorems of this section seem daunting. The first 3 pages of the section do give a good explanation of gcd, and lcm.) of Discrete Mathematics Elementary and Beyond.

Problems

(1) Let $a, b \in \mathbb{R}$. Prove $(a b)^{n}=a^{n} b^{n}$, for all $n \in \mathbb{N}$. Hint: Use induction on the exponent n.
(2) Let $\mathrm{a}=1763$, and $\mathrm{b}=42$
(a) Find $\operatorname{gcd}(a, b)$. Show the steps used by Euclid's algorithm to find $\operatorname{gcd}(a, b)$.
(b) Find integers x, y such that $\operatorname{gcd}(a, b)=a x+b y$
(c) Find $\operatorname{lcm}(\mathrm{a}, \mathrm{b})$
(3) Prove $\operatorname{gcd}(a, a+k)$ divides k.
(4) If a and b are relatively prime, that is $\operatorname{gcd}(a, b)=1$ then we can always find integers x, y such that $1=a x+b y$. This fact will be useful to prove the following proposition. Suppose p is a prime such that $p \mid a b$, that is p divides the product $a b$, then $p \mid a$ or $p \mid b$.

