CISC-102 FALL 2017

HOMEWORK 1 SOLUTIONS

Problems

(1) Rewrite the following statements using set notation, and then give an example by listing members of sets that match the description. For example: A is a subset of C. Answer: $A \subseteq C$. $A=\{1,2\}, C=\{1,2,3\}$.

There are many different solutions to these questions. I have shown several possibilities.
(a) The element 1 is not a member of (the set) A.
$1 \notin A . A=\{2,4\}$.
(b) The element 5 is a member of B .
$5 \in \mathrm{~B} . \mathrm{B}=\{5,6\}$
(c) A is not a subset of D .
$\mathrm{A} \nsubseteq \mathrm{D} . \mathrm{A}=\{2,4\}$ and $\mathrm{D}=\{42,18\}$.
(d) E and F contain the same elements.
$\mathrm{E}=\mathrm{F} . \mathrm{E}=\mathrm{F}=\{7\} . \mathrm{E} \subseteq \mathrm{F}$ and $\mathrm{F} \subseteq \mathrm{E}$.
(e) A is the set of integers larger than three and less than 12.
$\mathrm{A}=\{x: x \in \mathbb{Z}, 3<x<12\} . \mathrm{A}=\{4,5,6,7,8,9,10,11\}$.
(f) B is the set of even natural numbers less than 15 .
$\mathrm{B}=\{2 x: x \in \mathbb{N}, x<8\} . \mathrm{B}=\{2,4,6,8,10,12,14\}$.
(g) C is the set of natural numbers x such that $4+x=3$.
$\mathrm{C}=\{x: x \in \mathbb{N}, 4+x=3\} . \mathrm{C}=\emptyset$.
(2) $A=\{x: 3 x=6\} . A=2$, true or false? $\mathrm{A}=\{2\} . \mathrm{A} \neq 2$, so the statement is false.
(3) Which of the following sets are equal $\{r, s, t\},\{t, s, r\},\{s, r, t\},\{t, r, s\}$. They are all equal. The order in which elements are written in a set is not important, unless ellipses ". . " " are used to denote a sequence. For example $x=\{1,2, \ldots, 10\}$.
(4) Consider the sets $\{4,2\},\left\{x: x^{2}-6 x+8=0\right\},\{x: x \in \mathbb{N}, x$ is even, $1<x<5\}$. Which one of these sets is equal to $\{4,2\}$?

They are all equal.
(5) Which of the following sets are equal: $\emptyset,\{\emptyset\},\{0\}$. None are equal. $\{\emptyset\}$ is a set within a set. 0 is a number not a set, and definitely not the empty set.
(6) Explain the difference between $A \subseteq B$, and $A \subset B$, and give example sets that satisfy the two statements.
$A \subseteq B$ is pronounced as " A is a subset of B " implying that A is a subset of B that may also be equal to $\mathrm{A} . \mathrm{A}=\mathrm{B}=\{1\} . A \subset B$ is pronounced "A is a proper subset of B " implying that A is strictly a subset of B. $A=\{1\}, B=\{1,2\}$.
(7) Consider the following sets $A=\{1,2,3,4\}, B=\{2,3,4,5,6,7\}, C=\{3,4\}, D=$ $\{4,5,6\}, E=\{3\}$.
(a) Let X be a set such that $X \subseteq A$ and $X \subseteq B$. Which of the sets could be X ? For example X could be C, or X could be E. Are there any other sets that could be X ?
X could also be $\{2,3,4\}$.
(b) Let $X \nsubseteq D$ and $X \nsubseteq B$. Which of the the sets could be X ? Set A is the only set from the list that is not a subset of D and not a subset of B . There are infinitely more possibilities of sets that satisfy these requirements. For example all sets $X_{i}=\{x: x \in \mathbb{N}, x>8+i\}$ for all values of $i \in \mathbb{N}$, represents an infinite collection of sets that are not subsets of B or D .
(c) Find the smallest set M that contains all five sets.
$M=\{1,2,3,4,5,6,7\}$
(d) Find the largest set N that is a subset of all five sets. $N=\emptyset$
(8) Is an "element of a set", a special case of a "subset of a set"?

No, an element of a set is not a subset.
(9) Phrase the handshake counting problem using set theory notation.

How many two element subsets can be chosen from an n element set?
(10) List all of the subsets of $\{1,2,3\}$.
$\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}$.
(11) Let $A=\{a, b, c, d, e\}$. List all the subsets of A containing a but not containing b. $\{a\},\{a, c\},\{a, d\},\{a, e\},\{a, c, d\},\{a, c, e\},\{a, d, e\},\{a, c, d, e\}$

