CISC-102 FALL 2017

HOMEWORK 1 SOLUTIONS

PROBLEMS

(1) Rewrite the following statements using set notation, and then give an example by listing members of sets that match the description. For example: A is a subset of C. Answer: $A \subseteq C$. $A = \{1, 2\}$, $C = \{1, 2, 3\}$.

There are many different solutions to these questions. I have shown several possibilities.

- (a) The element 1 is not a member of (the set) A. $1 \notin A$. $A = \{2, 4\}$.
- (b) The element 5 is a member of B. $5 \in B$. $B = \{5,6\}$
- (c) A is not a subset of D. $A \not\subseteq D$. $A = \{2, 4\}$ and $D = \{42, 18\}$.
- (d) E and F contain the same elements. E = F. $E = F = \{7\}$. $E \subseteq F$ and $F \subseteq E$.
- (e) A is the set of integers larger than three and less than 12. A = $\{x : x \in \mathbb{Z}, 3 < x < 12\}$. A = $\{4, 5, 6, 7, 8, 9, 10, 11\}$.
- (f) B is the set of even natural numbers less than 15. B = $\{2x : x \in \mathbb{N}, x < 8\}$. B = $\{2,4,6,8,10,12,14\}$.
- (g) C is the set of natural numbers x such that 4+x=3. $C=\{x:x\in\mathbb{N},4+x=3\}$. $C=\emptyset$.
- (2) $A = \{x : 3x = 6\}$. A = 2, true or false? $A = \{2\}$. $A \neq 2$, so the statement is false.
- (3) Which of the following sets are equal $\{r, s, t\}$, $\{t, s, r\}$, $\{s, r, t\}$, $\{t, r, s\}$. They are all equal. The order in which elements are written in a set is not important, unless ellipses "..." are used to denote a sequence. For example $x = \{1, 2, ..., 10\}$.
- (4) Consider the sets $\{4,2\}$, $\{x: x^2 6x + 8 = 0\}$, $\{x: x \in \mathbb{N}, x \text{ is even, } 1 < x < 5\}$. Which one of these sets is equal to $\{4,2\}$?

They are all equal.

- (5) Which of the following sets are equal: \emptyset , $\{\emptyset\}$, $\{0\}$. None are equal. $\{\emptyset\}$ is a set within a set. 0 is a number not a set, and definitely not the empty set.
- (6) Explain the difference between $A \subseteq B$, and $A \subset B$, and give example sets that satisfy the two statements.
 - $A \subseteq B$ is pronounced as "A is a subset of B" implying that A is a subset of B that may also be equal to A. $A = B = \{1\}$. $A \subset B$ is pronounced "A is a proper subset of B" implying that A is strictly a subset of B. $A = \{1\}$, $B = \{1,2\}$.

- (7) Consider the following sets $A = \{1, 2, 3, 4\}$, $B = \{2, 3, 4, 5, 6, 7\}$, $C = \{3, 4\}$, $D = \{4, 5, 6\}$, $E = \{3\}$.
 - (a) Let X be a set such that $X \subseteq A$ and $X \subseteq B$. Which of the sets could be X? For example X could be C, or X could be E. Are there any other sets that could be X?
 - X could also be $\{2,3,4\}$. (b) Let $X \not\subseteq D$ and $X \not\subseteq B$. Which of the sets could be X? Set A is the only set from the list that is not a subset of D and not a subset of B. There are infinitely more possibilities of sets that satisfy these requirements. For example all sets $X_i = \{x : x \in \mathbb{N}, x > 8 + i\}$ for all values of $i \in \mathbb{N}$, represents an infinite collection of sets that are not subsets of B or D.
 - (c) Find the smallest set M that contains all five sets. $M = \{1,2,3,4,5,6,7\}$
 - (d) Find the largest set N that is a subset of all five sets. $N = \emptyset$
- (8) Is an "element of a set", a special case of a "subset of a set"? No, an element of a set is not a subset.
- (9) Phrase the handshake counting problem using set theory notation.

 How many two element subsets can be chosen from an n element set?
- (10) List all of the subsets of $\{1, 2, 3\}$. \emptyset , $\{1\}$, $\{2\}$, $\{3\}$, $\{1,2\}$, $\{1,3\}$, $\{2,3\}$, $\{1,2,3\}$.
- (11) Let $A = \{a, b, c, d, e\}$. List all the subsets of A containing a but not containing b. $\{a\}, \{a,c\}, \{a,d\}, \{a,e\}, \{a,c,d\}, \{a,c,e\}, \{a,d,e\}, \{a,c,d,e\}$