CISC-102 Fall 2017

Homework 10 Solutions

1. Prove (using mathematical induction on n) that:

$$\sum_{m=0}^{n} \binom{m+1}{m} = \binom{n+2}{n}$$

is true for all $n \in \mathbb{N}$.

Base: When n = 1 we have $\binom{1}{0} + \binom{2}{1} = \binom{3}{1}$ Induction Hypothesis:

$$\sum_{m=0}^{k} \binom{m+1}{m} = \binom{k+2}{k}$$

Induction Step

$$\sum_{m=0}^{k+1} \binom{m+1}{m} = \sum_{m=0}^{k} \binom{m+1}{m} + \binom{k+2}{k+1}$$
$$= \binom{k+2}{k} + \binom{k+2}{k+1} \text{(using the induction hypothesis)}$$
$$= \binom{k+3}{k+1}$$

Therefore by the principle of mathematical induction we have shown that

$$\sum_{m=0}^{n} \binom{m+1}{m} = \binom{n+2}{n}$$

is true for all $n \in \mathbb{N}$. \Box

I will now redo the induction step using k-1 for the induction hypothesis and k for the induction step. This makes the arithmetic a bit neater.

Induction Hypothesis:

$$\sum_{m=0}^{k-1} \binom{m+1}{m} = \binom{k+1}{k-1}$$

Induction Step

$$\sum_{m=0}^{k} \binom{m+1}{m} = \sum_{m=0}^{k-1} \binom{m+1}{m} + \binom{k+1}{k}$$
$$= \binom{k+1}{k-1} + \binom{k+1}{k} \text{ (using the induction hypothesis)}$$
$$= \binom{k+2}{k}$$

Therefore by the principle of mathematical induction we have shown that

$$\sum_{m=0}^{n} \binom{m+1}{m} = \binom{n+2}{n}$$

is true for all $n \in \mathbb{N}$. \Box

2. Use a truth table to verify that the proposition $p \vee \neg (p \wedge q)$ is a tautology, that is, the expression is true for all values of p and q.

p	q	$p \wedge q$	$\neg (p \land q)$	$p \vee \neg (p \wedge q)$
Т	Т	T	F	T
Т	F	F	T	T
F	T	F	T	T
F	F	F	T	T

3. Use a truth table to verify that the proposition $(p \land q) \land \neg (p \lor q)$ is a contradiction, that is, the expression is false for all values of p and q.

p	q	$p \wedge q$	$p \lor q$	$\neg (p \lor q)$	$(p \land q) \land \neg (p \lor q)$
T	T	T	T	F	F
T	F	F	Т	F	F
F	T	F	Т	F	F
F	F	F	F	Т	F

4. Use a truth table to show that $p \lor q \equiv \neg(\neg p \land \neg q)$.

p	q	$\neg p$	$\neg q$	$p \vee q$	$\neg p \wedge \neg q$	$\neg (\neg p \land \neg q)$
T	T	F	F	Т	F	T
T	F	F	Т	Т	F	Т
F	T	T	F	Т	F	Т
F	F	Т	Т	F	T	F

5. Show that the following argument is valid.

$$p \to q, \neg q \vdash \neg p$$

We need to show that $[(p \to q) \land \neg q] \to \neg p$ is a tautology, and we do so using a truth table as follows:

$\neg p$	p	q	$\neg q$	$p \rightarrow q$	$(p \to q) \land \neg q$	$[(p \to q) \land \neg q] \to \neg p$
F	Т	F	Т	F	F	Т
F	Т	Т	F	Т	F	Т
Т	F	Т	F	Т	F	Т
Т	F	F	Т	Т	Т	Т

6. Let $A = \{1, 2, 3, 4, 5\}$. Determine the truth value of each of the following statements.

- (a) $(\exists x \in A)(x + 2 = 7)$ This is true with x = 5.
- (b) $(\forall x \in A)(x+2 < 8)$ This is true, because

$$(1+2<8) \land (2+2<8) \land (3+2<8) \land (4+2<8) \land (5+2<8).$$

(c) $(\exists x \in A)(x + 3 < 2)$ This is false because:

$$(1+3 \not< 2) \land (2+3 \not< 2) \land (3+3 \not< 2) \land (4+3 \not< 2) \land (5+3 \not< 2).$$

(d) $(\forall x \in A)(x + 3 \le 9)$ This is true, because

$$(1+3 \le 9) \land (2+3 \le 9) \land (3+3 \le 9) \land (4+3 \le 9) \land (5+3 \le 9).$$

7. Let $A = \{1,2,3,4,5\}$. And let $(x, y) \in A^2$, be the domain of the propositions given below. Determine the truth value of the following statements.

- (a) $\exists x \forall y, x^2 < y + 1$ The statement is true because $1^2 < y + 1$ for every $y \in A$.
- (b) $\forall x \exists y, x^2 < y + 1$

The statement is false because there is no $y \in A$ such that $5^2 < y + 1$.