CISC-102 Fall 2017

Homework 10
Solutions

1. Prove (using mathematical induction on n) that:

$$
\sum_{m=0}^{n}\binom{m+1}{m}=\binom{n+2}{n}
$$

is true for all $n \in \mathbb{N}$.
Base: When $n=1$ we have $\binom{1}{0}+\binom{2}{1}=\binom{3}{1}$

Induction Hypothesis:

$$
\sum_{m=0}^{k}\binom{m+1}{m}=\binom{k+2}{k}
$$

Induction Step

$$
\begin{aligned}
\sum_{m=0}^{k+1}\binom{m+1}{m} & =\sum_{m=0}^{k}\binom{m+1}{m}+\binom{k+2}{k+1} \\
& =\binom{k+2}{k}+\binom{k+2}{k+1} \text { (using the induction hypothesis) } \\
& =\binom{k+3}{k+1}
\end{aligned}
$$

Therefore by the principle of mathematical induction we have shown that

$$
\sum_{m=0}^{n}\binom{m+1}{m}=\binom{n+2}{n}
$$

is true for all $n \in \mathbb{N}$.
I will now redo the induction step using $k-1$ for the induction hypothesis and k for the induction step. This makes the arithmetic a bit neater.

Induction Hypothesis:

$$
\sum_{m=0}^{k-1}\binom{m+1}{m}=\binom{k+1}{k-1}
$$

Induction Step

$$
\begin{aligned}
\sum_{m=0}^{k}\binom{m+1}{m} & =\sum_{m=0}^{k-1}\binom{m+1}{m}+\binom{k+1}{k} \\
& =\binom{k+1}{k-1}+\binom{k+1}{k} \text { (using the induction hypothesis) } \\
& =\binom{k+2}{k}
\end{aligned}
$$

Therefore by the principle of mathematical induction we have shown that

$$
\sum_{m=0}^{n}\binom{m+1}{m}=\binom{n+2}{n}
$$

is true for all $n \in \mathbb{N}$.
2. Use a truth table to verify that the proposition $p \vee \neg(p \wedge q)$ is a tautology, that is, the expression is true for all values of p and q.

p	q	$p \wedge q$	$\neg(p \wedge q)$	$p \vee \neg(p \wedge q)$
T	T	T	F	T
T	F	F	T	T
F	T	F	T	T
F	F	F	T	T

3. Use a truth table to verify that the proposition $(p \wedge q) \wedge \neg(p \vee q)$ is a contradiction, that is, the expression is false for all values of p and q.

p	q	$p \wedge q$	$p \vee q$	$\neg(p \vee q)$	$(p \wedge q) \wedge \neg(p \vee q)$
T	T	T	T	F	F
T	F	F	T	F	F
F	T	F	T	F	F
F	F	F	F	T	F

4. Use a truth table to show that $p \vee q \equiv \neg(\neg p \wedge \neg q)$.

p	q	$\neg p$	$\neg q$	$p \vee q$	$\neg p \wedge \neg q$	$\neg(\neg p \wedge \neg q)$
T	T	F	F	T	F	T
T	F	F	T	T	F	T
F	T	T	F	T	F	T
F	F	T	T	F	T	F

5. Show that the following argument is valid.

$$
p \rightarrow q, \neg q \vdash \neg p
$$

We need to show that $[(p \rightarrow q) \wedge \neg q] \rightarrow \neg p$ is a tautology, and we do so using a truth table as follows:

$\neg p$	p	q	$\neg q$	$p \rightarrow q$	$(p \rightarrow q) \wedge \neg q$	$[(p \rightarrow q) \wedge \neg q] \rightarrow \neg p$
F	T	F	T	F	F	T
F	T	T	F	T	F	T
T	F	T	F	T	F	T
T	F	F	T	T	T	T

6. Let $\mathrm{A}=\{1,2,3,4,5\}$. Determine the truth value of each of the following statements.
(a) $(\exists x \in A)(x+2=7)$

This is true with $x=5$.
(b) $(\forall x \in A)(x+2<8)$

This is true, because

$$
(1+2<8) \wedge(2+2<8) \wedge(3+2<8) \wedge(4+2<8) \wedge(5+2<8) .
$$

(c) $(\exists x \in A)(x+3<2)$

This is false because:

$$
(1+3 \nless 2) \wedge(2+3 \nless 2) \wedge(3+3 \nless 2) \wedge(4+3 \nless 2) \wedge(5+3 \nless 2) .
$$

(d) $(\forall x \in A)(x+3 \leq 9)$

This is true, because

$$
(1+3 \leq 9) \wedge(2+3 \leq 9) \wedge(3+3 \leq 9) \wedge(4+3 \leq 9) \wedge(5+3 \leq 9) .
$$

7. Let $\mathrm{A}=\{1,2,3,4,5\}$. And let $(x, y) \in A^{2}$, be the domain of the propositions given below. Determine the truth value of the following statements.
(a) $\exists x \forall y, x^{2}<y+1$

The statement is true because $1^{2}<y+1$ for every $y \in A$.
(b) $\forall x \exists y, x^{2}<y+1$

The statement is false because there is no $y \in A$ such that $5^{2}<y+1$.

