CISC-102 FALL 2017

HOMEWORK 3
SOLUTIONS
(1) Prove using mathematical induction that the sum of the first n natural numbers is equal to $\frac{n(n+1)}{2}$. This can also be stated as:

Prove that the proposition $\mathrm{P}(n)$,

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

is true for all $n \in \mathbb{N}$.
Base: for $n=1,1=\frac{1(1+1)}{2}$
Induction hypothesis: Assume that $\mathrm{P}(k)$ is true, that is:

$$
\sum_{i=1}^{k} i=\frac{k(k+1)}{2} .
$$

for $k \geq 1$.

Induction step: The goal is to show that $\mathrm{P}(k+1)$ is true, that is:

$$
\sum_{i=1}^{k+1} i=\frac{(k+1)(k+2)}{2}
$$

Consider the sum

$$
\begin{aligned}
\sum_{i=1}^{k+1} i & =\sum_{i=1}^{k} i+(k+1)(\text { arithmetic }) \\
& =\frac{k(k+1)}{2}+(k+1)(\text { Use the induction hypothesis }) \\
& =\frac{k^{2}+k+2 k+2}{2}(\text { get common denominator and add }) \\
& =\frac{k^{2}+3 k+2}{2}(\text { add } \mathrm{k}+2 \mathrm{k}) \\
& =\frac{(k+1)(k+2)}{2}(\text { factor to arrive at goal })
\end{aligned}
$$

We have shown that $\mathrm{P}(k)$ true implies that $\mathrm{P}(k+1)$ is true so by the principle of mathematical induction we conclude that $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$.
(2) Prove using mathematical induction that the proposition $\mathrm{P}(n)$,

$$
\sum_{i=2}^{n} i=\frac{(n-1)(n+2)}{2}
$$

is true for all $n \in \mathbb{N}, n \geq 2$
Base: for $n=2,2=\frac{1(2+2)}{2}$
Induction hypothesis: Assume that $\mathrm{P}(k)$ is true, that is:

$$
\sum_{i=2}^{k} i=\frac{(k-1)(k+2)}{2}
$$

for $k \geq 2$.
Induction step: The goal is to show that $\mathrm{P}(k+1)$ is true, that is:

$$
\sum_{i=2}^{k+1} i=\frac{(k)(k+3)}{2}
$$

Consider the sum

$$
\begin{aligned}
\sum_{i=2}^{k+1} i & =\sum_{i=2}^{k} i+(k+1)(\text { arithmetic }) \\
& =\frac{(k-1)(k+2)}{2}+(k+1)(\text { Use the induction hypothesis }) \\
& =\frac{k^{2}+k-2+2 k+2}{2}(\text { get common denominator and add }) \\
& =\frac{k^{2}+3 k}{2}(\text { arithmetic }) \\
& =\frac{k(k+3)}{2}(\text { factor to arrive at goal })
\end{aligned}
$$

We have shown that $\mathrm{P}(k)$ true implies that $\mathrm{P}(k+1)$ is true so by the principle of mathematical induction we conclude that $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}, n \geq 2$.
(3) Prove using mathematical induction that the proposition $\mathrm{P}(n)$,

$$
\sum_{i=3}^{n} i=\frac{(n-2)(n+3)}{2}
$$

is true for all $n \in \mathbb{N}, n \geq 3$
Base: for $n=3,3=\frac{(3-2)(3+3)}{2}$
Induction hypothesis: Assume that $\mathrm{P}(k)$ is true, that is:

$$
\sum_{i=3}^{k} i=\frac{(k-2)(k+3)}{2}
$$

for $k \geq 3$.
Induction step: The goal is to show that $\mathrm{P}(k+1)$ is true, that is:

$$
\sum_{i=3}^{k+1} i=\frac{(k-1)(k+4)}{2} .
$$

Consider the sum

$$
\begin{aligned}
\sum_{i=3}^{k+1} i & =\sum_{i=3}^{k} i+(k+1)(\text { arithmetic }) \\
& =\frac{(k-2)(k+3)}{2}+(k+1)(\text { Use the induction hypothesis }) \\
& =\frac{k^{2}+k-6+2 k+2}{2}(\text { get common denominator and add }) \\
& =\frac{k^{2}+3 k-4}{2}(\text { arithmetic }) \\
& =\frac{(k-1)(k+4)}{2}(\text { factor to arrive at goal })
\end{aligned}
$$

We have shown that $\mathrm{P}(k)$ true implies that $\mathrm{P}(k+1)$ is true so by the principle of mathematical induction we conclude that $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}, n \geq 3$.
(4) Prove using mathematical induction that the proposition $\mathrm{P}(n)$

$$
n!\leq n^{n}
$$

is true for all $n \in \mathbb{N}$.
Base: for $n=1,1$! = $1=1^{1}$
Induction hypothesis: Assume that $\mathrm{P}(k)$ is true, that is:

$$
k!\leq k^{k}
$$

for $k \geq 1$.
Induction step: The goal is to show that $\mathrm{P}(k+1)$ is true, that is:

$$
(k+1)!\leq(k+1)^{k+1}
$$

We have:

$$
\begin{aligned}
(k+1)! & =k!(k+1)(\text { Definition of factorial }) \\
& \leq k^{k}(k+1)(\text { Use the induction hypothesis }) \\
& \leq(k+1)^{k}(k+1)(\text { because } k \leq k+1) \\
& =(k+1)^{k+1}(\text { multiply })
\end{aligned}
$$

We have shown that $\mathrm{P}(k)$ true implies that $\mathrm{P}(k+1)$ is true so by the principle of mathematical induction we conclude that $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$.

