CISC-102 FALL 2017

HOMEWORK 4 SOLUTIONS
(1) Determine whether the mappings given below where $f: \mathbb{R} \mapsto \mathbb{R}$ are or are not functions, and explain your decision.
(a) $f(x)=1 / x$
$f(x)=1 / x$ is not a function from \mathbb{R} to \mathbb{R} because $1 / x$ is not defined for $x=0$. $f(x)=1 / x$ is a functions from $\mathbb{R} \backslash\{0\}$ to \mathbb{R}.
(b) $f(x)=\sqrt{x}$
$f(x)=\sqrt{x}$ is not a function from \mathbb{R} to \mathbb{R} because \sqrt{x} is not a real number for $x<0$. Furthermore, \sqrt{x} has a positive and negative value for $x \in \mathbb{R}, x>0$. We could salvage this by defining the set $\mathbb{R}^{+}=\{x: x \in \mathbb{R}, x \geq 0\}$, and consider a function from \mathbb{R}^{+}to \mathbb{R}^{+}defined as $f(x)=+\sqrt{x}$.
(c) $f(x)=3 x-3$

Multiplication by a constant and subtraction of a constant is closed under the reals. Therefore, $f(x)=3 x-3$ is a function because $3 x-3$ has a distinct image $x \in \mathbb{R}$.
(2) Determine whether each of the following functions from \mathbb{R} to \mathbb{R} is a bijection, and explain your decision. HINT: Plotting these functions may help you with your decision.
(a) $f(x)=3 x+4$
$f(x)=3 x+4$ is an onto function. Consider the equation $y=3 x+4$. For every real valued y we can find a real valued x, that is $x=y / 3-4 . f(x)=3 x+4$ is a one-to-one function because, if $3 x_{1}+4=3 x_{2}+4$ then $x_{1}=x_{2}$. Therefore we can conclude that $f(x)=3 x+4$ is a bijection. Furthermore we have $f^{-1}(x)=x / 3-4$
(b) $f(x)=-x^{2}+2$
$f(x)=-x^{2}+2$ is not a bijection. It is neither onto $(f(x) \leq 2)$ nor one-to-one ($f(x)=0$ for $x=+\sqrt{2}$ and for $x=-\sqrt{2})$.
(c) $f(x)=x^{3}-x^{2}$
$f(x)=x^{3}-x^{2}$ is not a bijection. It is not one-to-one because $x^{3}-x^{2}=x^{2}(x-1)$ and is equal to 0 for $x=1$, and $x=0$.

Figure 1. Graphs of functions for questions 1 and 2 . (a) $1 / x$ (b) \sqrt{x} (c) $3 x-3$ (d) $3 x+4$ (e) $-x^{2}+2$ (f) $x^{3}-x^{2}$
(3) Consider the recursive function $T(1)=1, T(n)=T(n-1)+1$, for all $n \geq 2$.
(a) Use the recursive definition to obtain values $\mathrm{T}(2), \mathrm{T}(3)$, and $\mathrm{T}(4)$.
$\mathrm{T}(2)=2, \mathrm{~T}(3)=3, \mathrm{~T}(4)=4$.
(b) Using the values that you obtained for $\mathrm{T}(2), \mathrm{T}(3)$, and $\mathrm{T}(4)$, to guess the value of $\mathrm{T}(\mathrm{n})$, and then prove that it is correct using induction.
We guess that $\mathrm{T}(n)=n$, and prove this using mathematical induction.
Let $\mathrm{P}(n)$ denote the proposition that the recursive function $\mathrm{T}(n)$ as defined above has the closed form solution $\mathrm{T}(n)=n$.
$\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$.
Proof: We use mathematical induction.
Base: $\mathrm{T}(1)=1$ by definition.
Induction Hypothesis: Assume that $\mathrm{P}(k)$ is true for some $k, k \geq 1$, that is, $\mathrm{T}(k)=k$.
Induction Step: $\mathrm{P}(k+1)$ is the proposition that $\mathrm{T}(k+1)=k+1$, and we show that it is true using the induction hypothesis.

$$
\begin{aligned}
T(k+1) & =T(k)+1(\text { defintion of } \mathrm{T}(\mathrm{k}+1)) \\
& =k+1 \text { (induction hypothesis) }
\end{aligned}
$$

We have shown that $\mathrm{P}(k)$ true implies that $\mathrm{P}(k+1)$ is true so by the principle of mathematical induction we conclude that $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$.
(4) Consider the recursive function $F(1)=3, F(n)=3 F(n-1)$, for all $n \geq 2$.
(a) Use the recursive definition to obtain values $\mathrm{F}(2), \mathrm{F}(3)$, and $\mathrm{F}(4)$.
$\mathrm{F}(2)=9, \mathrm{~F}(3)=27, \mathrm{~F}(4)=81$.
(b) Use the values that you obtained for $\mathrm{F}(2), \mathrm{F}(3)$, and $\mathrm{F}(4)$, to guess the value of $\mathrm{F}(\mathrm{n})$, and then prove that it is correct using induction.
We guess that $\mathrm{F}(n)=3^{n}$, and prove this using mathematical induction.
Let $\mathrm{P}(n)$ denote the proposition that the recursive function $\mathrm{F}(n)$ as defined above has the closed form solution $\mathrm{F}(n)=3^{n}$.
$\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$.
Proof: We use mathematical induction.
Base: $\mathrm{F}(1)=3=3^{1}$ by definition.
Induction Hypothesis: Assume that $\mathrm{P}(k)$ is true for some $k, k \geq 1$, that is, $\mathrm{F}(k)=3^{k}$.

Induction Step: $\mathrm{P}(k+1)$ is the proposition that $\mathrm{F}(k+1)=3^{k+1}$, and we show that it is true using the induction hypothesis.

$$
\begin{aligned}
F(k+1) & =3 F(k)(\text { defintion of } \mathrm{F}(\mathrm{k}+1)) \\
& =3\left(3^{k}\right)(\text { induction hypothesis }) \\
& =3^{k+1}
\end{aligned}
$$

We have shown that $\mathrm{P}(k)$ true implies that $\mathrm{P}(k+1)$ is true so by the principle of mathematical induction we conclude that $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$.

