
CISC-102 FALL 2017

HOMEWORK 5 SOLUTIONS

(1) Consider the following relations on the set A = {1, 2, 3}:

• R = {(1, 1), (1, 2), (1, 3), (3, 3)},
• S = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)},
• T = {(1, 1), (1, 2), (2, 2), (2, 3)},
• A×A.

For each of these relations determine whether it is symmetric, antisymmetric, re-
flexive, or transitive.

S and A × A are symmetric.

R and T are antisymmetric.

S and A × A are reflexive.

R, S and A × A are transitive.

(2) Explain why each of the following binary relations on the set S = {1, 2, 3} is or is
not an equivalence relation on S.

(a) R1 = {(1, 1), (1, 2), (3, 2), (3, 3), (2, 3), (2, 1)}
(b) R2 = {(1, 1), (2, 2), (3, 3), (2, 1), (1, 2),

(3, 2), (2, 3), (3, 1), (1, 3)}
(c) R3 = {(1, 1), (2, 2), (3, 3), (3, 1), (1, 3)}

R1, is neither reflexive nor transitive so it’s not an equivalence relation. R1 is
symmetric.

R2 is reflexive, symmetric, and transitive so it is an equivalence relation.

R3 is reflexive, symmetric and transitive, so it is an equivalence relation.

(3) Let R be a relation on the set of Natural numbers such that (a, b) ∈ R if a ≥ b.
Show that the relation R on N is a partial order.

R is reflexive because for all a ∈ (N) a ≥ a. R is antisymmetric because for all
a, b ∈ N, a 6= b we have either a ≥ b or b ≥ a but not both. R is transitive because
for all a, b, c ∈ N, if a ≥ b and b ≥ c, we have a ≥ c.

1



2 HOMEWORK 5 SOLUTIONS

(4) Evaluate

(a) |3− 7| = | − 4| = 4

(b) |1− 4| − |2− 9| = | − 3| − | − 7| = −4

(c) | − 6− 2| − |2− 6| = | − 8| − | − 4| = 4

(5) Find the quotient q and remainder r, as given by the Division Algorithm theorem
for the following examples.

Recall we want to find r, 0 ≤ r < |b|, such that a = qb + r, where all values are
integers.

(a) a = 500, b = 17.

500 = 29× 17 + 7 so r = 7.

(b) a = −500, b = 17.

−500 = −30× 17 + 10 so r = 10.

(c) a = 500, b = −17.

500 = −29×−17 + 7 so r = 7

(d) a = −500, b = −17

−500 = 30×−17 + 10 so r = 10

(6) Show that c|0, for all c ∈ Z, c 6= 0.

Recall the definition of divisibility:

If c = b
a is an integer, or alternately if c is an integer such that b = ca then we say

that a divides b or equivalently, b is divisible by a, and this is written a|b.
Since 0

c = 0 for all c ∈ Z, c 6= 0, and 0 is an integer we have shown that every

integer c divides 0. Note: 0
0 is undefined.

(7) Let a, b, c ∈ Z such that c|a and c|b. Let r be the remainder of the division of b by
a, that is there is a q ∈ Z such that b = qa + r, 0 ≤ r < |b|. Show that under these
condition we have c|r.

Since c|a and c|b we can write:

(1)a = cpa and b = cpb, such that pa, pb ∈ Z.

So we can rewrite b = qa + r as:

cpb = qcpa + r

and this simplifies to:
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c(pb − qpa) = r

Since pb − qpa is an integer we can conclude that c|r.

(8) Let a, b ∈ Z such that 2|a. (In other words a is even.) Show that 2|ab.

This is just a special case of the divisibility theorem that states if c|a then for any
integer b, c|ab

(9) Let a ∈ Z show that 3|a(a + 1)(a + 2), that is the product of three consecutive
integers is divisible by 3.

Observe that we can write a = 3q + r where r ∈ {0, 1, 2}.

Case 0: If r = 0 a is divisible by 3 and since (a + 1)(a + 2) is an integer it follows
that 3|a(a + 1)(a + 2).

Case 1: If r = 1, add 2 to both sides of the equation a = 3q + 1 to get a + 2 =
3q + 3 = 3(q + 1) thus a + 2 is divisible by 3 and since a(a + 1) is an integer it
follows that 3|a(a + 1)(a + 2).

Case 2: If r = 2, add 1 to both sides of the equation a = 3q + 2 to get a + 1 =
3q + 3 = 3(q + 1) thus a + 1 is divisible by 3 and since a(a + 2) is an integer it
follows that 3|a(a + 1)(a + 2).

(10) Use induction to prove the following propositions.

(a) Use induction to prove n3 + 2n is divisible by 3, for all n ∈ N, n ≥ 1.

Base: 3|13 + 2
Induction Hypothesis: Assume that k3 + 2k is divisible by 3, for k ≥ 1.
Induction Step: Goal: Show that 3|(k + 1)3 + 2(k + 1) using the induction
hypothesis.

We begin by manipulating the expression (k + 1)3 + 2(k + 1) as follows:

(k + 1)3 + 2(k + 1) = k3 + 3k2 + 3k + 1 + 2k + 2

= k3 + 2k + 3(k2 + k + 1)

Observe that 3|k3 + 2k by the induction hypothesis and 3|3(k2 + k + 1). So
3|k3 + 2k + 3(k2 + k + 1).

Therefore by the principle of mathematical induction we conclude that n3+2n
is divisible by 3, for all n ∈ N, n ≥ 1. �
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(b) Show that any integer value greater than 2 can be written as 3a + 4b + 5c,
where a, b, c are non-negative integers, that is a, b, c ∈ Z, a, b, c ≥ 0.

We use the 2nd form of induction to prove this result.

Base: We use three base cases: 3 = 3×1+4×0+5×0, 4 = 3×0+4×1+5×0, 5 =
3× 0 + 4× 0 + 5× 1.

Induction Hypothesis: Assume that all values j such that 2 ≤ j ≤ k can
be written as 3a + 4b + 5c, where a, b, c are non-negative integers.

Induction Step:

By the induction hypothesis we can write k = 3a + 4b + 5c. There are three
cases to consider:

a > 0 (Note: Using 3 as a base is an example of this case.)

Since k = 3a+4b+5c and a > 0. We can write k+1 = 3(a−1)+4(b+1)+5c.

a = 0, b > 0 (Note: Using 4 as a base is an example of this case.)

Since k = 4b + 5c and b > 0. We can write k + 1 = 4(b− 1) + 5(c + 1).

a = 0, b = 0, c > 0 (Note: Using 5 as a base is an example of this case.)

Since k = 5c and c > 0 We can write k + 1 = 3× 2 + 5(c− 1).

Therefore, by the principle of mathematical induction we conclude that any
integer value greater than 2 can be written as 3a + 4b + 5c, where a, b, c are
non-negative integers. �

(c) Show that every Natural number n can be represented as a sum of distinct
powers of 2. For example the number 42 = 32 + 8 + 2 = 25 + 23 + 21.

We use the second form of induction to prove this result.

Base: 1 = 20.

Induction Hypothesis: Assume that all values j can be represented as a
sum of distinct powers of 2, for 1 ≤ j ≤ k.

Induction Step: Consider the number k + 1. Let 2a be the largest power
of 2 less than or equal to k + 1. Now let b = k + 1 − 2a. If b = 0 we are
done. Otherwise observe that b ≤ k, and by the induction hypothesis b can
be represented as a sum of distinct powers of 2. This, leads to the conclusion
that k + 1 is also represented as a sum of distinct powers of 2.

Therefore, by the principle of mathematical induction we conclude that every
Natural number n can be represented as a sum of distinct powers of 2 �


