CISC-102 FALL 2017

HOMEWORK 5 SOLUTIONS
(1) Consider the following relations on the set $A=\{1,2,3\}$:

- $R=\{(1,1),(1,2),(1,3),(3,3)\}$,
- $S=\{(1,1),(1,2),(2,1),(2,2),(3,3)\}$,
- $T=\{(1,1),(1,2),(2,2),(2,3)\}$,
- $A \times A$.

For each of these relations determine whether it is symmetric, antisymmetric, reflexive, or transitive.
S and $\mathrm{A} \times \mathrm{A}$ are symmetric.
R and T are antisymmetric.
S and $\mathrm{A} \times \mathrm{A}$ are reflexive.
R, S and $\mathrm{A} \times \mathrm{A}$ are transitive.
(2) Explain why each of the following binary relations on the set $S=\{1,2,3\}$ is or is not an equivalence relation on S.
(a) $R_{1}=\{(1,1),(1,2),(3,2),(3,3),(2,3),(2,1)\}$
(b) $R_{2}=\{(1,1),(2,2),(3,3),(2,1),(1,2)$, $(3,2),(2,3),(3,1),(1,3)\}$
(c) $R_{3}=\{(1,1),(2,2),(3,3),(3,1),(1,3)\}$
R_{1}, is neither reflexive nor transitive so it's not an equivalence relation. R_{1} is symmetric.
R_{2} is reflexive, symmetric, and transitive so it is an equivalence relation.
R_{3} is reflexive, symmetric and transitive, so it is an equivalence relation.
(3) Let R be a relation on the set of Natural numbers such that $(a, b) \in \mathrm{R}$ if $a \geq b$. Show that the relation R on \mathbb{N} is a partial order.
R is reflexive because for all $a \in(N) a \geq a$. R is antisymmetric because for all $a, b \in \mathbb{N}, a \neq b$ we have either $a \geq b$ or $b \geq a$ but not both. R is transitive because for all $a, b, c \in \mathbb{N}$, if $a \geq b$ and $b \geq c$, we have $a \geq c$.
(4) Evaluate
(a) $|3-7|=|-4|=4$
(b) $|1-4|-|2-9|=|-3|-|-7|=-4$
(c) $|-6-2|-|2-6|=|-8|-|-4|=4$
(5) Find the quotient q and remainder r, as given by the Division Algorithm theorem for the following examples.

Recall we want to find $r, 0 \leq r<|b|$, such that $a=q b+r$, where all values are integers.
(a) $a=500, b=17$.
$500=29 \times 17+7$ so $r=7$.
(b) $a=-500, b=17$.
$-500=-30 \times 17+10$ so $r=10$.
(c) $a=500, b=-17$.
$500=-29 \times-17+7$ so $r=7$
(d) $a=-500, b=-17$
$-500=30 \times-17+10$ so $r=10$
(6) Show that $c \mid 0$, for all $c \in \mathbb{Z}, c \neq 0$.

Recall the definition of divisibility:
If $c=\frac{b}{a}$ is an integer, or alternately if c is an integer such that $b=c a$ then we say that a divides b or equivalently, b is divisible by a , and this is written $a \mid b$.
Since $\frac{0}{c}=0$ for all $c \in \mathbb{Z}, c \neq 0$, and 0 is an integer we have shown that every integer c divides 0 . Note: $\frac{0}{0}$ is undefined.
(7) Let $a, b, c \in \mathbb{Z}$ such that $c \mid a$ and $c \mid b$. Let r be the remainder of the division of b by a, that is there is a $q \in \mathbb{Z}$ such that $b=q a+r, 0 \leq r<|b|$. Show that under these condition we have $c \mid r$.
Since $c \mid a$ and $c \mid b$ we can write:

$$
\text { (1) } a=c p_{a} \text { and } b=c p_{b}, \text { such that } p_{a}, p_{b} \in \mathbb{Z}
$$

So we can rewrite $b=q a+r$ as:

$$
c p_{b}=q c p_{a}+r
$$

and this simplifies to:

$$
c\left(p_{b}-q p_{a}\right)=r
$$

Since $p_{b}-q p_{a}$ is an integer we can conclude that $c \mid r$.
(8) Let $a, b \in \mathbb{Z}$ such that $2 \mid a$. (In other words a is even.) Show that $2 \mid a b$.

This is just a special case of the divisibility theorem that states if $c \mid a$ then for any integer $b, c \mid a b$
(9) Let $a \in \mathbb{Z}$ show that $3 \mid a(a+1)(a+2)$, that is the product of three consecutive integers is divisible by 3 .

Observe that we can write $a=3 q+r$ where $r \in\{0,1,2\}$.
Case 0: If $r=0$ a is divisible by 3 and since $(a+1)(a+2)$ is an integer it follows that $3 \mid a(a+1)(a+2)$.
Case 1: If $r=1$, add 2 to both sides of the equation $a=3 q+1$ to get $a+2=$ $3 q+3=3(q+1)$ thus $a+2$ is divisible by 3 and since $a(a+1)$ is an integer it follows that $3 \mid a(a+1)(a+2)$.
Case 2: If $r=2$, add 1 to both sides of the equation $a=3 q+2$ to get $a+1=$ $3 q+3=3(q+1)$ thus $a+1$ is divisible by 3 and since $a(a+2)$ is an integer it follows that $3 \mid a(a+1)(a+2)$.
(10) Use induction to prove the following propositions.
(a) Use induction to prove $n^{3}+2 n$ is divisible by 3 , for all $n \in \mathbb{N}, n \geq 1$.

Base: $3 \mid 1^{3}+2$
Induction Hypothesis: Assume that $k^{3}+2 k$ is divisible by 3 , for $k \geq 1$.
Induction Step: Goal: Show that $3 \mid(k+1)^{3}+2(k+1)$ using the induction hypothesis.
We begin by manipulating the expression $(k+1)^{3}+2(k+1)$ as follows:

$$
\begin{aligned}
(k+1)^{3}+2(k+1) & =k^{3}+3 k^{2}+3 k+1+2 k+2 \\
& =k^{3}+2 k+3\left(k^{2}+k+1\right)
\end{aligned}
$$

Observe that $3 \mid k^{3}+2 k$ by the induction hypothesis and $3 \mid 3\left(k^{2}+k+1\right)$. So $3 \mid k^{3}+2 k+3\left(k^{2}+k+1\right)$.
Therefore by the principle of mathematical induction we conclude that $n^{3}+2 n$ is divisible by 3 , for all $n \in \mathbb{N}, n \geq 1$.
(b) Show that any integer value greater than 2 can be written as $3 a+4 b+5 c$, where a, b, c are non-negative integers, that is $a, b, c \in \mathbb{Z}, a, b, c \geq 0$.
We use the 2 nd form of induction to prove this result.
Base: We use three base cases: $3=3 \times 1+4 \times 0+5 \times 0,4=3 \times 0+4 \times 1+5 \times 0,5=$ $3 \times 0+4 \times 0+5 \times 1$.
Induction Hypothesis: Assume that all values j such that $2 \leq j \leq k$ can be written as $3 a+4 b+5 c$, where a, b, c are non-negative integers.

Induction Step:

By the induction hypothesis we can write $k=3 a+4 b+5 c$. There are three cases to consider:
$a>0$ (Note: Using 3 as a base is an example of this case.)
Since $k=3 a+4 b+5 c$ and $a>0$. We can write $k+1=3(a-1)+4(b+1)+5 c$.
$a=0, b>0$ (Note: Using 4 as a base is an example of this case.)
Since $k=4 b+5 c$ and $b>0$. We can write $k+1=4(b-1)+5(c+1)$.
$a=0, b=0, c>0$ (Note: Using 5 as a base is an example of this case.)
Since $k=5 c$ and $c>0$ We can write $k+1=3 \times 2+5(c-1)$.
Therefore, by the principle of mathematical induction we conclude that any integer value greater than 2 can be written as $3 a+4 b+5 c$, where a, b, c are non-negative integers.
(c) Show that every Natural number n can be represented as a sum of distinct powers of 2 . For example the number $42=32+8+2=2^{5}+2^{3}+2^{1}$.
We use the second form of induction to prove this result.
Base: $1=2^{0}$.
Induction Hypothesis: Assume that all values j can be represented as a sum of distinct powers of 2 , for $1 \leq j \leq k$.
Induction Step: Consider the number $k+1$. Let 2^{a} be the largest power of 2 less than or equal to $k+1$. Now let $b=k+1-2^{a}$. If $b=0$ we are done. Otherwise observe that $b \leq k$, and by the induction hypothesis b can be represented as a sum of distinct powers of 2 . This, leads to the conclusion that $k+1$ is also represented as a sum of distinct powers of 2 .
Therefore, by the principle of mathematical induction we conclude that every Natural number n can be represented as a sum of distinct powers of 2

