CISC-102 Fall 2017

Homework 6
Solutions

1. Let $a, b \in \mathbb{R}$. Prove $(a b)^{n}=a^{n} b^{n}$, for all $n \in \mathbb{N}$. Hint: Use induction on the exponent n.

Proof. Base: $(a b)^{1}=a^{1} b^{1}$
Induction Hypothesis: Assume that $(a b)^{k}=a^{k} b^{k}$ for $k \geq 1$.
Induction Step: Consider:

$$
\begin{aligned}
(a b)^{k+1} & =(a b)^{k}(a)(b) \\
& =\left(a^{k}\right)\left(b^{k}\right)(a)(b) \\
& =a^{k+1} b^{k+1}
\end{aligned}
$$

Therefore, by the principle of mathematical induction we conclude that $(a b)^{n}=a^{n} b^{n}$, for all $n \in \mathbb{N}$.
2. Let $\mathrm{a}=1763$, and $\mathrm{b}=42$
(a) Find $\mathrm{g}=\operatorname{gcd}(\mathrm{a}, \mathrm{b})$. Show the steps used by Euclid's algorithm to find $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$.
$(1763)=41(42)+41$
$(42)=1(41)+1$
$(41)=41(1)+0$
$\operatorname{gcd}(1763,42)=\operatorname{gcd}(42,41)=\operatorname{gcd}(41,1)=\operatorname{gcd}(1,0)=1$
(b) Find integers m and n such that $\mathrm{g}=\mathrm{ma}+\mathrm{nb}$

$$
\begin{aligned}
1 & =42-1(41) \\
& =42-1[1763-41(42)] \\
& =42(42)+(-1) 1763
\end{aligned}
$$

(c) Find $\operatorname{lcm}(\mathrm{a}, \mathrm{b})$
$\operatorname{lcm}(\mathrm{a}, \mathrm{b})=\frac{a b}{g c d(a, b)}=74046$
3. Prove $\operatorname{gcd}(a, a+k)$ divides k.

Proof. Let $g=\operatorname{gcd}(a, a+k)$. Therefore $g \mid a$ and $g \mid a+k$, and this implies that $g \mid a+k-a$, that is, $g \mid k$.
4. If a and b are relatively prime, that is $\operatorname{gcd}(a, b)=1$ then we can always find integers x, y such that $1=a x+b y$. This fact will be useful to prove the following proposition. Suppose p is a prime such that $p \mid a b$, that is p divides the product $a b$, then $p \mid a$ or $p \mid b$.

Proof. We can look at two possible cases.
Case 1: $p \mid a$ and then we are done.
Case 2: $p \nmid a$, and since p is prime we can deduce that p and a are relatively prime. Therefore, there exist integers x, y such that

$$
\begin{equation*}
1=a x+p y . \tag{1}
\end{equation*}
$$

Now multiply the left and right hand side of equation (1), by b to get:

$$
\begin{equation*}
b=b a x+b p y . \tag{2}
\end{equation*}
$$

We know that $p \mid b a$ so $p \mid b a x$, and we can also see that $p \mid b p y$. Therefore, $p \mid(b a x+b p y)$, and by equation (2) we can conclude that $p \mid b$.

