CISC-102 FALL 2017

HOMEWORK 7 SOLUTIONS

Problems

(1) Find all Natural numbers between 1 and 50 that are congruent to $4(\bmod 11)$.
$4,15,26,37,48$. You can verify that $11|(4-4), 11|(15-4), 11|(26-4), 11|(37-4)$, and $11 \mid(48-4)$.
(2) Find two Natural numbers a and b such that $2 a \equiv 2 b(\bmod 6)$, but $a \not \equiv b(\bmod 6)$.
You can solve this problem using trial and error. A good place to start is $a=1$ so we have $2(1) \equiv 2(\bmod 6)$, The next Natural number that is congruent to $2(\bmod 6)$ is 8 . So setting $b=4$ gives us $2(1) \equiv 2(4)(\bmod 6)$, and $1 \not \equiv 4(\bmod 6)$.
(3) Prove that if $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$ then $a-c \equiv b-d(\bmod m)$.

Proof. $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$ respectively imply:
$b-a=p m$ and $d-c=q m$ where p and q are integers.
Therefore we have:

$$
\begin{aligned}
(b-a)-(d-c) & =p m-q m \\
& =m(p-q)
\end{aligned}
$$

Therefore we can conclude that $m \mid(b-a)-(d-c)$ so $a-c \equiv b-d(\bmod m)$.
(4) Write out each of the 5 residue classes $(\bmod 5)$ for integers in the range -10 to 10 .
$[0]_{5}=\{-10,-5,0,5,10\}$
$[1]_{5}=\{-9,-4,1,6\}$
$[2]_{5}=\{-8,-3,2,7\}$
$[3]_{5}=\{-7,-2,3,8\}$
$[4]_{5}=\{-6,-1,4,9\}$

