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CISC-102 
Fall 2017 
Week 11  

Logical Consequence and Arguments 

Consider the expression: 

p is true and p implies q is true , as a consequence we can 
deduce that q must be true.  

This is a logical argument, and can be written 
symbolically as,  

p, p → q ⊢ q  

where: p, p → q is called a sequence of premises, and  q is 
called the conclusion.  
The symbol ⊢ denotes a logical consequence.  

A sequence of premises whose logical consequence leads 
to a conclusion is called an argument. 
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Valid Argument 

We can now formally define what is meant by a valid 
argument.  

The argument P1, P2, P3 , ... , Pn ⊢ Q is valid if and 
only if P1 ∧ P2 ∧ P3 ∧ ... ∧ Pn → Q is a tautology.  

Example: Consider the argument  

p → q, q → r, ⊢ p → r  
We can see if this argument is valid by using truth tables 
to show that the proposition: 

(p → q) ∧ (q → r) → (p → r) 
 a tautology, that is, the proposition is true for all T/F 
values of p,q,r.  
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p q r (p → q) ∧ (q → r) (p → r) [(p → q) ∧ 
(q → r)] 
→ (p → r)

T T T T T T

T T F F F T

T F T F T T

T F F F F T

F T T T T T

F T F F T T

F F T T T T

F F F T T T
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Consider the following argument: 

If two sides of a triangle are equal then  
      the opposite angles are equal  
T is a triangle with two sides that are not equal 
               

The opposite angles of T are not equal 

(With this notation the horizontal line separates a 
sequence of propositions from a conclusion.) 
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Let p be the proposition  
“two sides of a triangle are equal” 

and let q be the proposition  
“the opposite angles are equal” 

We can re-write the argument in symbols as: 

p → q, ¬p ⊢ ¬q 

and as the expression:  
[(p → q) ∧ ¬p ]→ ¬q 

We can check whether this is a valid argument by using a 
truth table to determine whether the expression is a 
tautology. 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p q [(p → q) ∧ ¬p ]→ ¬q

T T

T F

F T

F F
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Let’s look at another logical argument that can be 
expressed as: 

[(p → q) ∧ ¬p ]→ ¬q 

If 2 ∣ a then 2 ∣ ab 
2 ∤ a 
               

2 ∤ ab 

(With this notation the horizontal line separates a 
sequence of propositions from a conclusion.) 

Here we have  

p the proposition:  2 ∣ a  
q the proposition:  2| ab 

I can show that the argument is invalid with an example: 

Let a = 3 and b = 2. Clearly,  2 ∤ a  and 2 ∣ ab 
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In the geometry argument we can’t find a counter 
example. The reasoning is flawed, but can obtain a correct 
version of the argument by noticing that: 

If two sides of a triangle are equal then  
      the opposite angles are equal 

Is a valid geometric fact. We also have the fact that: 

If two angles of a triangle are equal then  
      then opposite sides are equal 

(NOTE: if 2 | ab then 2 |a is not necessarily true) 

The following is a valid argument.  

If two angles of a triangle are equal then  
      then opposite sides are equal 
T is a triangle with two sides that are not equal 
               

The opposite angles of T are not equal 

That is: 

[(p → q) ∧ ¬q ]→ ¬p  is a valid argument and can be 
verified to be a tautology using truth tables  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p q (p → q) (p → q) ∧ ¬q [(p → q) ∧ ¬q ]→ ¬p

T T T F T

T F F F T

F T T F T

F F T T T
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Propositional Functions 

Let P(x) be a propositional function that is either true or 
false for each x in A.  

That is, the domain of P(x) is a set A, and the range is 
{true, false}. NOTE: Sometimes propositional function 
are called predicates. 

Observe that the set A can be partitioned into two subsets:  

•Elements with an image that is true. 
•Elements with an image that is false. 

In particular we may define the truth set of P(x) as: 
TP = { x : x in A, P(x) is true} 

Examples: Consider the following propositional 
functions defined on the positive integers.  

P(x): x + 2 > 7 ; TP = {x : x > 5} 
P(x): x + 5 < 3 ; TP = ∅ 
P(x): x + 5 > 1 ; TP = ℕ  
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Quantifiers 
There are two widely used logical quantifiers 

Definition: 
Universal Quantifier: ∀ (for all) 

Let P(x) be a propositional function. A  quantified 
proposition using the propositional function can be stated 
as: 

 (∀x ∈ A) P(x) (for all x in A P(x) is true) 

Tp = {x :x ∈ A, P(x)} = A 

Or if the elements of A can be enumerated as: 

A = {x1, x2, x3, ...} 

We would have: 

P(x1) ∧ P(x2) ∧ P(x3) ∧ ... is true. 
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Definition: 
Existential Quantifier: ∃(there exists) 

Let P(x) be a propositional function. A  quantified 
proposition using the propositional function can be stated 
as: 

(∃x ∈ A) P(x) ( There exists an x in A s.t. P(x) is true) 

TP = {x :x ∈ A, P(x)} ≠ ∅ 

Or if the elements of A can be enumerated as: 

A = {x1, x2, x3, ...} 

We would have: 

P(x1) ∨ P(x2) ∨ P(x3) ∨ ... is true. 
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Quantifiers 
  
Statement True when: False when:
 (∀x ∈ A) P(x) P(x) is true for 

every x ∈ A.
P(x) is false for 
one or more  
x ∈ A. 

(∃x ∈ A) P(x) P(x) is true for 
one or more  
x ∈ A.

P(x) is false for 
every x ∈ A.
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Propositional functions with more than one variable 

Consider the following illustrative example: 

Let p(x,y) be the proposition that “x+y = 10” where the 
ordered pair (x,y) ∈ {1, 2, ..., 9} × {1, 2, ..., 9}. 

Consider the following quantified statements: 

1.  ∀x ∃y  p(x,y) 
2.   ∃y ∀x p(x,y) 

1. Says: “for every x there exists a y such that x + y = 10” 
2. Says: “there exists a y such that for every x, x+y = 10” 

Statement 1. is true, and statement 2, is false by 
inspection. This simply illustrates that the concepts that 
we have seen can be extended to more that one variable.  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Methods of Proof 

Axioms 

Definition: An axiom is a statement or proposition that is 
regarded as being established, accepted, or self-evidently 
true. 

Mathematics is a system created by humans, and can be 
developed in its entirety by a small collection of axioms 
that are assumed to be true.  

Euclid of Alexandria (300 BC) developed an axiomatic 
approach for geometry starting with only 5 axioms.  

In this course we have been making quite a few 
assumptions about what we accept as true. In practice it 
would be excruciating to prove everything from basic 
principles. There is an estimate that proving 2+2=4 from 
basic principles requires more than 20,000 steps.  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Logical Deduction 

We use logical deduction in a natural way to solve puzzles  
of many different forms, ranging from playing Sudoku to 
solving murder mystery’s. 

In mathematics logical deduction is used as we proceed 
from step to step in a proof.  

The basic rule that we use, as described in formal logic,  
is: 

p, p → q ⊢ q 

We can verify that this is a valid argument. We can also 
reason this out informally as: 

If p is true, and p implies that q is true, then we may 
conclude that q is true.  

As an aside, this inference rule is named “modus ponens” 
by logicians, and is also known as the “law of 
detachment”. You can look this up if you are interested 
but as far as this course goes, I think the informal 
explanation is sufficient. 
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Methods of Proof 

Proof by Induction 

Verifying closed form expressions for recursively defined 
functions and summations is a perfect use for 
mathematical induction.    
The Fibonacci function 
F(0) = 0 
F(1) = 1 
F(n) = F(n-1) + F(n-2) for all Natural numbers n ≥ 2. 

NOTE: (Some variants start the function with F(1) = 1, 
and F(2) =1. ) 

The first few Fibonacci numbers are  
F(0) = 0, F(1) = 1, F(2) = 1,  
F(3) = 2, F(4) = 3, F(5) = 5,  
F(6) = 8, F(7) = 13, F(8) = 21,  
F(9) =34. 

�17



Week 11 page !  of !18 44

The Fibonacci sequence is named after Fibonacci. His 
real name was Leonardo Pisano Bogollo, and he lived 
between 1170 and 1250 in Italy."Fibonacci" was his 
nickname, which roughly means "Son of Bonacci”.  As 
well as being famous for the Fibonacci Sequence, he 
helped spread through Europe the use of Hindu-Arabic 
Numerals (like our present number system 0,1,2,3,4,5,6,7,8,9) 
to replace Roman Numerals (I, II, III, IV, V, …).  

We can prove that the sum of squares of the first n 
Fibonacci numbers is:  

!  

  

CISC-102 FALL 2015

HOMEWORK 9

Problems

(1) Consider the recursive function T(1) = 1, T(n) = T(n� 1) +1 , for all n � 2.

(a) Use the recursive definition to obtain values T(2), T(3), and T(4).

T(2) = 2, T(3) = 3, T(4) = 4.

(b) Using the values that you obtained for T(2), T(3), and T(4), guess the value

of T(n), and then prove that it is correct using induction.

The recursive function T(1) = 1, T(n) = T(n � 1) +1 , for all n � 2 has the

solution T(n) = n.

Proof:

Base case: T(1) = 1.

Induction hypothesis: T(k) = k.

Induction step: T(k + 1) = T(k) +1 = k + 1.

(2) Let Fn denote the nth Fibonacci number. Prove the following identities using

induction

(a)

nX

i=0

F 2
i = Fn · Fn+1

Proof:

Base: F 2
0 = 0

2
= F0 · F1.

Induction Hypothesis: Assume

Pk�1
i=0 F 2

i = Fk�1 · Fk, for k � 1.

Induction Step:

kX

i=0

F 2
i = F 2

k +

k�1X

i=0

F 2
i

= F 2
k + Fk�1 · Fk

= Fk(Fk + Fk�1)

= Fk · Fk+1

1

�18



Week 11 page !  of !19 44

And the following question about the sum of odd numbers 
is easily proved using induction. 

!  

BRIEF ARTICLE

THE AUTHOR

1 + 3 + · · ·+ (2n� 1) =
nX

i=1

2i� 1 = n2

Proof:
Base: 1 = 12

Induction Hypothesis: Assume that
Pk

i=1 2i� 1 = k2.
Induction Step:

k+1X

i=1

2i� 1 =
kX

i=1

(2i� 1) + 2k + 1

= k2 + 2k + 1

= (k + 1)(k + 1)

= (k + 1)2

1
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Here is a proof by “picture” of the sum odd integers.  

!  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Strong Induction 

Let b denote a base case values for the induction and let 
P(n) denote the proposition to prove. 

Strong induction or the 2nd form of induction is the same 
technique as the 1st form of induction except: 

•  In the 1st form of induction the hypothesis is stated as: 
 Assume P(k) is true for k ≥ b 
•  In the 2nd form of induction the hypothesis is stated as: 
 Assume P(b), P(b+1), ..., P(k-1), P(k) is true. 
or alternately 
 Assume P(i) is true, for i such that b ≤ i ≤ k. 

We may need to use more that one base case to 
“bootstrap” the induction process. 
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Consider the recursively defined integer sequence: 
a0=1, a1=2, a2=3 and an=an-1+an-2+an-3 for all n ≥ 3, n ∊ ℕ 
Let P(n) be the proposition an ≤ 3n. 
Prove P(n) is true  for all n ∊ ℕ.  

Proof: (strong induction) 
Base: a0 =1=30 ≤ 30, a1=2 ≤ 31, a2 =3 ≤ 32. 

Induction Hypothesis: Assume that P(1), P(2), …, P(k) 
are true. 
Induction Step:  Show P(1), P(2), …, P(k) are true, 
implies P(k+1) is true. 

ak+1 = ak + ak-1 + ak-2  (definition) 

         ≤  3k + 3k-1 + 3k-2   (induction assumption) 

         <  3(3k)                 ( 3k-1 <  3k, and 3k-2 < 3k, for k ≥ 1) 
      =  3k+1                       ◻ 
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Consider a chocolate bar consisting of n rectangular 
pieces. You may break the bar (or part of a bar) with a 
single horizontal or vertical cut that splits the bar into two 
rectangles. How many breaks are needed to break the bar 
into n individual pieces? 

"  

Suppose the bar has one piece, that is n = 1. Then 0 
breaks are needed. Suppose the bar has 2 pieces, then 1 
break is needed. What about 3 or 4 pieces? 
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Let P(n) be the proposition that an n piece rectangular 
chocolate bar (as described) can be split into n individual 
pieces using n-1 breaks.  

Proof: (Strong induction) 
Base: n = 1, 0 breaks.  
Induction Hypothesis: P(1), P(2), …, P(k) are true. 
Induction Step: Show that P(1), P(2), …, P(k) are true 
implies that  P(k+1) is true.  

Consider a rectangular bar with k+1 pieces. Use 1 break 
to get two rectangular bars, of i and j pieces such that  
i+j = k+1.  

By the induction hypothesis the bar with i pieces can be 
split with i-1 breaks, and the bar with j pieces can be split 
with j-1 breaks. Putting this together we need:  

i-1 + j-1 + 1 breaks  

to split the bar with k+1 pieces. Observe that  

i-1+j-1+1 = i+j-1=k+1-1,  

which is the required result.  ◻ 
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Proof Templates 

Prove that 2 | a(a+1), for all a ∈ ℕ. 

An informal proof of this result could be the observation 
that either a or (a+1) must be divisible by 2, and therefore  
the product a(a+1) must also be divisible by 2.  

However, in our studies we saw a very similar example 
that provides a “template” for proving the result. 

That is: Let a ∈ ℕ show that 3 | a(a+1)(a+2), that is the 
product of three consecutive integers is divisible by 3.  
  
Familiar facts from high school math, as well as results 
that we have seen this term and used repeatedly can be 
assumed without further proof.  

In practice for a course like this there is usually a very 
similar proof that you have seen that can be used as a 
template. And this will implicitly use assumptions that 
you may use. 
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Proof by cases.  

Proofs by cases can be used for the following results: 

1. Prove that 2 | a(a+1), for all a ∈ ℕ. 

2. Prove that 3 | a(a+1)(a+2), for all a ∈ ℕ. 

The basic template is to partition all possible outcomes 
into individual cases that are easier to handle separately 
than together.  
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Consider the following problem: 

Prove that 6 | a(a+1)(a+2), for all a ∈ ℕ. 

Proof: We can use case analysis from the previous two 
results (result 1, result 2) as a template. We already know 
by result 2 that: 

3 | a, or 3 | a+1 or 3 | a+2 so.  

Case 1:  3 | a, then by result 1. 2 | (a+1)(a+2). Thus 6 | 
a(a+1)(a+2). 

Case 2:  3 | a+2, then by result 1. 2  | a(a+1). Thus 6 | 
a(a+1)(a+2). 

Case 3:  3 | a+1.   

 Case 3.1: a and a+2 are both even, then 2 | a and 3 | 
a+1, so 6 | a(a+1)(a+2). 
  
 Case 3.2:  a and a+2 are both odd, therefore a+1 must 
be even, and 2 | (a+1). Since a+1 is divisible by both 2 
and 3 we conclude that in this case 6 | (a+1) and 
furthermore 6 | a(a+1)(a+2).  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Prove that 6 | a(a+1)(a+2), for all a ∈ ℕ. 

Here is a very slick proof using a completely different 
method (That can be used as a new template): 

Proof: Observe that a(a+1)(a+2) = (a+2)!/(a-1)! which is 
equal to: 

 

We know that  is an integer so we conclude that:  
6 | a(a+1)(a+2).  ◻ 

We can use this same idea observing that: 

a(a+1) = (a+1)!/(a-1)! which is equal to:   
 

Similarly we had:  

6
�a+2

3

�
= 6 (a+2)!

3!(a�1)!

�a+2
3

�

�28

2

✓
a+ 1

2

◆
= 2

(a+ 1)!

2!(a� 1)!

6

✓
a+ 2

3

◆
= 6

(a+ 2)!

3!(a� 1)!
= (a+ 2)(a+ 1)a
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Prove that a(a+1)(a+2)(a+3) is divisible by 24 for all 
natural numbers a.  

Let’s try the previous solution as a template. 

Proof: Observe that a(a+1)(a+2)(a+3) = (a+3)!/(a-1)! 
which is equal to: 

 

We know that  is an integer so we conclude that:  
24 | a(a+1)(a+2)(a+3). ◻  

24
�a+3

4

�
= 24(a+3)!

4!(a�1)!

�a+3
4

�
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More proof by cases. 

Theorem: Every collection of 6 people includes 3 people 
who have all met each other, or 3 people who have never 
met.  

Proof:   
Let x denote one of the 6 people. Now consider the 
number of people from the other 5 who have met or have 
not met x.  

There are two cases to consider. 

• case 1: There are 3 or more people who have met x.  
• case 1.1 Among those who have met x, none have 
met each other, so this satisfies the requirements of 
the theorem. 
• case 1.2 Among those who have met x, at least one 
pair have met each other. Since they have also met x, 
this satisfies the requirements of the theorem 
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• case 2: There are 3 or more people who have not met x. 
• case 2.1 Those who have not met x, have all met 
each other, and this satisfies the requirements of the 
theorem. 
• case 2.2 Amongst those who have not met x, there 
are 2 (or more) who have not met each other. That 
pair together with x satisfy the requirements of the 
theorem. 

Thus we have proved that every collection of 6 people 
includes 3 people who all have met each other, or 3 
people who have never met by using an exhaustive case 
analysis. ◻ 

Note: This collection of 6 people can be thought of as a 
set of 6 elements. People either have met or have never 
met, there is no other possibility. In general the “met” 
property could be any arbitrary (Boolean) function of two 
elements of the set that returns true or false.  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Direct Proof: 

Let a be a natural number. If a is even then a+1 is odd and 
a+2 is even. 

Proof: If a is an even natural number we have  

a = 2m  for some natural number m. 

then  

a + 1 = 2m + 1 implying that a is odd, 

and  

a+2 = 2m + 2 = 2(m+1) implying that a is even. ◻ 

�32



Week 11 page !  of !33 44

Indirect Proof 

If a is an integer and a2  is odd then a is also odd. 

Proof: If a2 is odd we have: 

a2 = 2m + 1  
                          

Now a can be written as: 

a  =  

and I don’t know how to continue this proof.  

Sometimes the contrapositive leads to a simpler proof.  

The proposition is: 

     If a is an integer and a2  odd then a is also odd. 

or for a an integer:   a2  odd → a odd 

The contrapositive would be 

not a odd →  not a2 odd or  

a even → a2 even.  

p
2m+ 1
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If a is an integer and a2  is odd then a is also odd.  

Proof: We will prove that the contrapositive is true. That 
is, let a be an integer, if a is even then a2 is even. 

 We know in general that if  b | c then b | mc for any 
integer m. Therefore as a special case we have 2 | a so  
2 | a2.  Therefore we can conclude that if  a2 is odd then a 
must also be odd. ◻                                            

An indirect proof proves the contrapositive of the 
proposition. 
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Proof by Contradiction. 
Let a be an integer, if a2 is even then a is even.  

How would we prove this proposition? 

Proof: Suppose a2 is even and a is odd. If a is odd then we 
have the equation: a = 2m + 1, where m is an integer. 
Now square both sides to get the equation:  

a2 = 4 m2 + 4m + 1.               ( 1 ) 
Let n = m2 + m, and notice that n is an integer. Thus 
equation ( 1 ) simplifies to: 

a2 = 4 n + 1  
and is odd. Assuming a2 is even and a odd leads to a 
contradiction, so we conclude that if a2 is even then a is 
even.  ◻ 
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Proof by the Pigeon Hole principle: 

Prove that at least 5 days of the month of March fall on 
the same week day.  

Proof: Imagine that there are 7 pigeon holes with 4 chairs 
inside each. There are 31 days in March so at most 28 
days can be seated on the chairs. Therefore there are at 
least 5 days that fall on the same day of the week. ◻ 

The pigeon hole principle is a particular case of a larger 
method of proof called proof by contradiction.  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Proof by Contradiction 

We know that p, p → q ⊢ q that is if p is true and p → q is 
true then the logical consequence is that q must be true.  

Suppose we know that a proposition is false, and we want 
to prove that  p is true. Consider this round about method 
of proving that p is true.  

¬p,  ¬p → F ⊢ p 

We can verify this with a truth table.  

p ¬p ¬p → F ¬p ∧ ¬p → F → p
T F T T

F T F T
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Prove that at least 5 days of the month of March fall on 
the same week day. 

Let p be the proposition that 5 or more days of the month 
of March fall on the same day of the week. Now ¬p is the 
proposition that at most 4 days of the month of March fall 
on the same day of the week. The false proposition is 7 × 
4 ≥ 31. (7 × 4 ≥ 31 is the same as saying that every day in 
March gets to sit in a chair in the pigeon holes.) The 
assumption that at most 4 days of March fall on the same 
day of the week leads to a contradiction. ◻  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Prove that √2 is irrational.  

Proof: We show that the assumption that √2 is rational 
leads to a contradiction. 

If √2 is rational then we can write it as the quotient a/b 
where a,b are both integers. Furthermore, we assume that 
gcd(a,b) = 1, that is we reduced the quotient to lowest 
terms. Thus: 

√2 = a/b           
square both sides of equation:  

2 = a2/b2 

now multiply both sides by b2: 
2 b2 = a2. 

Therefore a2 is even implying a is even. 
If a is even we can write it as a = 2m for some integer m. 
Now we get  

2b2 = 4m2. 
Divide both sides by 2: 

b2 = 2m2. 
So b2 is even implying b is even.  

We have established that both a and b are even, so 
gcd(a,b) ≥ 2. However, when we started we said that 
gcd(a,b) =1. Thus we have established a contradiction to 
the assertion that √2 is rational, so we conclude that √2 is 
irrational. ◻ 
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Recall we saw a proof by contradiction when we studied 
prime factorization. (Week 5) 

Theorem: Every integer n  > 1 is either prime or can be 
written as a product of primes. 

Proof:  
(1) Suppose there is an integer k  > 1 that is the largest  

integer that is the product of primes. This then implies 
that the integer k+1 is not prime or a product of primes.  

(2) If k+1 is not prime it must be composite and:  
  k+1 = ab,  a,b ∈ ℤ,  a,b ∉ {1,-1, k+1, -(k+1)}. 

(3) Therefore, |a| <  k+1 and |b| <  k+1.  
  So |a| and |b| are prime or a product of primes.  
  

(4) Since k+1 is a product of a and b it follows that it too 
is a product of primes.  
  

(5) Thus we have contradicted the assumption that there is 
a largest integer that is the product of primes, and we 
can therefore conclude that every integer n > 1 is either 
prime or written as a product of primes.  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In proving that “every integer n  > 1 is either prime or can 
be written as a product of primes” we used the well 
ordering principle to justify the fact that if there is an 
integer that is the product of primes then there is a least 
integer that is the product of primes. Well ordering is also 
implied when we argue that we can express a rational 
number in lowest terms.  

  

�41



Week 11 page !  of !42 44

Some additional problems. 

1. Prove |xy| = |x| |y| for all integers x and y.  
(case analysis)  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2. Prove that the sum of two rational numbers is rational. 
(direct proof)  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3. Prove that if 3n+2 is odd, then n is odd.  
(proof by contradiction) 
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