Week 2 1 of 20

CISC-102
Idempotent laws: (Ib) ANA=A
Associative laws: 2b)(ANB)NC=ANBNC)

Commutative laws: | Bb)ANB=BNA

Distributive laws: Ab)ANBUC)=(ANB)UANC)
Gb)ANU=A

(6b) ANP =1

Identity laws:

Verify these properties with U = {1,2,3,4,5,6,7},
A={1,23}, B=1{2,4, 6} C={4,5}.
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Idempotent laws: (lay AUA=A

Associative laws: ) ( AUB)UC =AU (BUC)
Commutative laws: | B3a) AUB=BUA

Distributive laws: 4a) AUBNC)=(AUB)N(AUCQC)
Ba) AU =A

(6a) AUU=U

Verify these properties with U = {1,2,3,4,5,6,7},
A=1{1,23},B=1{2,4,6}.

Identity laws:
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Idempotent laws:

(la)AUA=A

Associative laws:

2a) (AUB)UC = AU(BUC)

Commutative laws:

Ba)AUB=BUA

Distributive laws:

Ga)AUBNC)=(AUB)N(AUC)

. . Ba) AU =A
Identity laws: G AUU=TU
Idempotent laws: (Ib) ANA=A

Associative laws:

2b)(ANB)NC=ANBNC)

Commutative laws:

Bb)ANB=BNA

Distributive laws:

A)AN(BUC)=(ANB)UANC)

Identity laws:

Gb)ANU=A

(6b) ANP =0

Duality

Suppose E is an equation of set algebra. The dual E* of E
is the equation obtained by replacing each occurrence of
U,N,Uand G in E by N, U, J, and U, respectively.
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Involution laws: (7) (A9 = 4
8a) AUAC =U
Complement laws: c
%a) U~ =0

DeMorgan’s laws:

(10a) (AU B)¢ = A¢ N B€

Verify these properties with U = {1,2,3,4,5,6,7},
A=1{1,23},B=1{2,4,6}.
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(8b) AN A€ = ¢
(9b) p¢ = U
DeMorgan’s laws: (10b) (AN B)* = AU B*

Verify these properties with U = {1,2,3,4,5,6,7},
A={1,23}, B=1{2,4, 6}.

Complement laws:
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Definition: A set S 1s said to be finite 1f S 1s
empty or 1f S contains exactly m elements where
m 1s a positive integer; otherwise S 1s infinite.

Some finite sets:
A= {1,2,3,4},
B= {x:xeN,x>1,x<6}

Some infinite sets:
C=1{1,2,3,4,...},

D= {x:xeR,x>1,x<6}

Notation: We use vertical bars | | to denote the
size or cardinality of a finite set.

| A |=4.

B=1{1,2,3,4,5,6},s0|B|=6.



Week 2 7 of 20

Definition: The set of all (different) subsets of S
1s the power set of S, which we denote as P(S).

If S 1s a finite set we can prove that:
P(S) =25
Some examples:

& : the empty set has 0 elements, and 1 subset.
So | P(©) | = 2°.

{a}: has 1 element and 2 subsets.
So |P({a})| =2

{a,b}: has 2 elements and 4 subsets.
So |P({a,b})| = 22.
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{a,b,c}: Let’s keep track of the subsets of
{a,b,c} by using a binary string counter.

L i

There's only Il 0
s of people in
g?ep\:oﬂd thoes who
understand binary
and thoes who dont

|

Corollary: There are 2 types of people in the
world, those who can spell “those” and “don’t”
correctly and those that can’t.
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a b c

1 1 1 denotes {a,b,c}
a b c

1 0 1 denotes {a,c}
a b c

0 0 O denotes J

We can keep track of the subsets of {a,b,c} by
using a 0 or 1 1n a 3 bit binary string to denote
the presence or absence of the symbol in the
subset.

For elements of {a,b,c} we say that
a 1s element 1, b 1s element 2, c 1s element 3

We also say that the binary bits are numbered
1,2,3 from left to right.

To map a subset to a binary number
set bit 1 to

0 if the element 1 is not in the subset
1 if the element 1 is in the subset
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Claim: Every different 3 bit binary string
denotes a different subset of {a,b,c}, and every
subset of {a, b, ¢} 1s represented uniquely by a 3
bit binary string.

If we can count 3 bit binary strings then we can
also count subsets of {a,b,c}.

There are 2 choices for the left bit (bit 1).
There are 2 choices for the middle bit (bit 2).
There are 2 choices for the right bit (bit 3).
The total number of choices are:
2x2x2=23=8,

This coincides with the claim that:

[P({a,b,c})|=2°.
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A standard ““trick” in mathematics 1s to obtain a
mapping from a new problem to one where the
solution 1s known. When done properly (the
mapping has to be one-to-one and onto) the
known solution can be used to solve a new
problem.
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Humans use the decimal system or numbers
base 10, using decimal digits 0,1,2,3,4,5,6,7,8.9.

Consider the decimal number 2017.

It 1s equal to:

2x1034+0x102+1 x 101 +7 x 10°.

2 0 1 7
2x1000 0x100 1 x10 7 x 1
2 x 103 0 x 102 1 x 101 7 x 100

The maximum value that can be written using 4
decimal digits 1s 9999. The total number of
values from 0 ... 9999 is 10000 or 10%.
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Binary numbers are numbers base 2, using
binary bits 0,1.

Consider the binary number 1011.
It 1s equal to:

1 x23+0%x22+1 x21+1 x 29,

1 0 1 1
1x8 Ox4 1 x2 1 x 1
1 x 23 0 x 22 1 x 21 1 x 20

The maximum value that can be written using 4
binary bits 1s 1111. The total number of values
from O ... 1111(binary) is 10000 (binary) or 24



Week 2 14 of 20

Consider the binary number
11111100001

What 1s the corresponding value in decimal?

1 1 1 1 1 1 0 0 0 0 1
1x210 1x29 1x28 1x27 1 x 26 1x25 O0Ox24 O0x28 O0x22 0 x 21 1x20

1024 512 256 128 64 32 0 0 0 0 1

1024 + 512 +256 + 128 + 64 + 32 +1 = 2017
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Definition: Let S be a non-empty set. A
partition of S consists of disjoint non-empty
subsets of S whose union is S.

For example: Let S be the set {1,2,3,4,5,6}:
E={x&ES:xiseven}
O={x€&€eS:x1sodd}

Observethat E N O = and E U O =§, so the
set (of sets){E,O} 1s a partition of S.

This {{1,2},{4,3,6},{5}} 1s another partition of
S.

When solving algorithmic problems it 1s
sometimes useful to partition the problem into
cases.
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A collection or a class of sets can be defined using an
index as follows:

Let A;denote the set {x : x € Z, x > 1}, for all i € N. So we
have:

A= { 1,2,3, ... }, Ar= {2,3,4, }, A3={3,4,5, ...}
etc.

A shorthand notation can be used to denote multiple
unions and intersection operations.

For example:

AU A>U A3

can be written as:
3
Ui:lAi
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This 1s a convenient way to define a large class of sets (in
this case infinitely many) and leads to some interesting
consequences.

. A CA;if i>

2. Uz‘eN A; =N

3. niEN Ai=10

To justify 3. suppose that there is at least one element £ in
the “intersection”. So k£ must be a positive integer.
However by definition there is a set 4, such that ¢ > k£ and
k ¢ Ar. This contradicts the assumption that there is at least

one element in the “intersection” and therefore we
conclude that the “intersection” is equal to 0.
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Principle of Inclusion and Exclusion

Ginger owns a peculiar music store where all of the instruments are
either red or if the instrument is not red it is a guitar.

There are 15 red instruments and 18 guitars. How many instruments are
there at Ginger’s?

Here’s a Venn diagram modelling the inventory at Ginger’s.

The diagram clearly shows that we also need to know how many of the
guitars at Ginger’s are red to determine the total number of instruments
in the store. So suppose there are 8 red guitars at Ginger’s.
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Let R denote the set of red instruments at Ginger’s and G the set of
guitars. We then have:

IR|=15,|G|=18, R N G| =8.

The total number of instruments is:
IRUG|=R|+|G|-IRNG|=15+18 -8 =25.

The Principle of Inclusion and Exclusion can be stated as follows:

Theorem: Suppose A and B are finite sets. Then:

|AUB|=|A|+ |B|-|AN B|
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This generalizes to a formula for determining the cardinality of the union
of three sets.

Corollary: Suppose A, B, and C are finite sets. Then:

IAUBUC|=|A|+|B|+[C|-|JANB|-|]ANC|-IBNC|+|]ANBNC]

A
C

Consider a collection of 40 people where each of them 1s wearing
something that is red or blue or green such that:

20 wear something blue,

20 wear something red,

20 wear something green

10 wear red and blue, 10 wear red and green, 10 wear blue and green.

How many people in the class are wearing all 3 colours?

We will come back to the Principle of inclusion and exclusion when we
look at more counting problems.



