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Verify these properties with U = {1,2,3,4,5,6,7}, 
A = {1,2,3}, B = {2, 4, 6} C={4,5}. 
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We note that:

(i) There are m = 2n such fundamental products.
(ii) Any two such fundamental products are disjoint.

(iii) The universal set U is the union of all fundamental products.

Thus U is the disjoint union of the fundamental products (Problem 1.60). There is a geometrical description
of these sets which is illustrated below.

EXAMPLE 1.6 Figure 1-5(a) is the Venn diagram of three sets A, B, C. The following lists the m = 23 = 8
fundamental products of the sets A, B, C:

P1 = A ∩ B ∩ C, P3 = A ∩ BC ∩ C, P5 = AC ∩ B ∩ C, P7 = AC ∩ BC ∩ C,

P2 = A ∩ B ∩ CC, P4 = A ∩ BC ∩ CC, P6 = AC ∩ B ∩ CC, P8 = AC ∩ BC ∩ CC.

The eight products correspond precisely to the eight disjoint regions in the Venn diagram of sets A, B, C as
indicated by the labeling of the regions in Fig. 1-5(b).

Fig. 1-5

1.5 ALGEBRA OF SETS, DUALITY

Sets under the operations of union, intersection, and complement satisfy various laws (identities) which are
listed in Table 1-1. In fact, we formally state this as:

Theorem 1.5: Sets satisfy the laws in Table 1-1.

Table 1-1 Laws of the algebra of sets
Idempotent laws: (1a) A ∪ A = A (1b) A ∩ A = A

Associative laws: (2a) (A ∪ B) ∪ C = A ∪ (B ∪ C) (2b) (A ∩ B) ∩ C = A ∩ (B ∩ C)

Commutative laws: (3a) A ∪ B = B ∪ A (3b) A ∩ B = B ∩ A

Distributive laws: (4a) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) (4b) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

Identity laws: (5a) A ∪ ∅ = A (5b) A ∩ U = A

(6a) A ∪ U = U (6b) A ∩ ∅ = ∅
Involution laws: (7) (AC)C = A

Complement laws:
(8a) A ∪ AC = U (8b) A ∩ AC = ∅
(9a) UC = ∅ (9b) ∅C = U

DeMorgan’s laws: (10a) (A ∪ B)C = AC ∩ BC (10b) (A ∩ B)C = AC ∪ BC
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Duality
Suppose E is an equation of set algebra. The dual E∗ of E 
is the equation obtained by replacing each occurrence of 
∪, ∩, U and ∅ in E by ∩, ∪, ∅, and U, respectively. 
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Definition: A set S is said to be finite if S is 
empty or if S contains exactly m elements where 
m is a positive integer; otherwise S is infinite.  

Some finite sets:  
A =  {1, 2, 3, 4},  
B =  {x : x ∈ ℕ, x ≥ 1, x ≤ 6} 

Some infinite sets:  
C =  {1, 2, 3, 4, … },  
D =  {x : x ∈ ℝ, x ≥ 1, x ≤ 6} 

Notation: We use vertical bars | | to denote the 
size or cardinality of a finite set.  

| A | = 4. 

B = {1,2,3,4,5,6}, so | B | = 6. 
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Definition: The set of all (different) subsets of S 
is the power set of S, which we denote as P(S).  

If S is a finite set we can prove that: 

| P(S) | = 2 |S|. 

Some examples:  

∅ : the empty set has 0 elements, and 1 subset. 
So | P(∅) | = 20. 

{a}: has 1 element and 2 subsets.  
So |P({a})| = 21. 

{a,b}: has 2 elements and 4 subsets.  
So |P({a,b})| = 22. 
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{a,b,c}: Let’s keep track of the subsets of 
{a,b,c} by using a binary string counter. 

 

Corollary: There are 2 types of people in the 
world, those who can spell “those” and “don’t” 
correctly and those that can’t. 
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a b c                                              
1 1 1  denotes {a,b,c}    
a b c  
1 0 1 denotes {a,c} 
a b c  
0 0 0 denotes ∅ 

We can keep track of the subsets of {a,b,c} by 
using a 0 or 1 in a 3 bit binary string to denote 
the presence or absence of the symbol in the 
subset.  

For elements of {a,b,c} we say that  
a is element 1, b is element 2, c is element 3 

We also say that the binary bits are numbered 
1,2,3 from left to right.  

To map a subset to a binary number  
set bit i to  
0 if the element i is not in the subset 
1 if the element i is in the subset 
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Claim: Every different 3 bit binary string 
denotes a different subset of {a,b,c}, and  every 
subset of {a, b, c} is represented uniquely by a 3 
bit binary string.  

If we can count 3 bit binary strings then we can 
also count subsets of {a,b,c}. 

There are 2 choices for the left bit (bit 1). 
There are 2 choices for the middle bit (bit 2). 
There are 2 choices for the right bit (bit 3). 

The total number of choices are: 
  

2 × 2 × 2 = 23 = 8. 

This coincides with the claim that: 

 |P({a,b,c})| = 23 . 
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A standard “trick” in mathematics is to obtain a 
mapping from a new problem to one where the 
solution is known. When done properly (the 
mapping has to be one-to-one and onto) the 
known solution can be used to solve a new 
problem.  
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Humans use the decimal system or numbers 
base 10, using decimal digits 0,1,2,3,4,5,6,7,8,9. 

Consider the decimal number 2017. 

It is equal to:  

2 × 103 + 0 × 102 + 1 × 101 + 7 × 100. 

The maximum value that can be written using 4 
decimal digits is 9999. The total number of 
values from 0 … 9999 is 10000 or 104. 

2 0 1 7
2 × 1000 0 × 100 1 × 10 7 × 1 
2 × 103 0 × 102 1 × 101 7 × 100
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Binary numbers are numbers base 2, using 
binary bits 0,1. 

Consider the binary number 1011. 

It is equal to:  

1 × 23 + 0 × 22 + 1 × 21 + 1 × 20 . 

The maximum value that can be written using 4 
binary bits is 1111. The total number of values 
from 0 … 1111(binary)  is 10000 (binary) or 24. 

1 0 1 1
1 × 8 0 × 4 1 × 2 1 × 1 
1 × 23 0 × 22 1 × 21 1 × 20
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Consider the binary number  

11111100001 

What is the corresponding value in decimal? 

1024 + 512 + 256 + 128 + 64 + 32 +1 = 2017 

1 1 1 1 1 1 0 0 0 0 1

1 × 210 1 × 29 1 × 28 1 × 27 1 × 26 1 × 25 0 × 24 0 × 23 0 × 22 0 × 21 1 × 20

1024 512 256 128 64 32 0 0 0 0 1
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Definition: Let S be a non-empty set. A 
partition of S consists of disjoint non-empty 
subsets of S whose union is S.  

For example: Let S be the set {1,2,3,4,5,6}: 
E = {x ∈ S : x is even} 
Ο = {x ∈ S : x is odd} 

Observe that E  ∩ O = ∅ and E ∪ O = S, so the 
set (of sets){E,O} is a partition of S.  

This  {{1,2},{4,3,6},{5}} is another partition of 
S. 

When solving algorithmic problems it is 
sometimes useful to partition the problem into 
cases.  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A collection or a class of sets can be defined using an 
index as follows: 

Let Ai denote the set {x : x ∈ , x ≥ i}, for all . So we 
have: 

A1 = { 1, 2, 3, ... },  A2 = { 2, 3, 4, ... },  A3 = { 3, 4, 5, ... } 
etc. 

A shorthand notation can be used to denote multiple 
unions and intersection operations.  

For example:  

A1 ∪ A2 ∪ A3   

 
can be written as: 

Z i 2 N

[3
i=1Ai
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This is a convenient way to define a large class of sets (in 
this case infinitely many) and leads to some interesting 
consequences.  

1.   if  i ≥  j 

2.  !  

3.  !  

To justify 3. suppose that there is at least one element k in 
the “intersection”. So k must be a positive integer. 
However by definition there is a set  such that  and 

. This contradicts the assumption that there is at least 
one element in the “intersection” and therefore we 
conclude that the “intersection” is equal to  . 

Ai ✓ Aj

S
i2N Ai = N

T
i2N Ai = ;

A` ` > k

k /2 A`

;
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Principle of Inclusion and Exclusion 

Ginger owns a peculiar music store where all of the instruments are 
either red or if the instrument is not red it is a guitar.  

There are 15 red instruments and 18 guitars. How many instruments are 
there at Ginger’s? 

Here’s a Venn diagram modelling the inventory at Ginger’s.  

                           !  

The diagram clearly shows that we also need to know how many of the 
guitars at Ginger’s are red to determine the total number of instruments 
in the store. So suppose there are 8 red guitars at Ginger’s. 



Week 2 �  of �19 20

Let R denote the set of red instruments at Ginger’s and G the set of 
guitars. We then have: 

|R| = 15, |G| = 18, |R ∩ G| = 8.  

The total number of instruments is: 

|R ∪ G| = |R| + |G| - |R ∩ G| = 15 + 18 - 8 = 25.  

The Principle of Inclusion and Exclusion can be stated as follows: 

Theorem: Suppose A and B are finite sets. Then: 

|A ∪ B| = |A| + |B| - |A ∩ B| 



Week 2 �  of �20 20

This generalizes to a formula for determining the cardinality of the union 
of three sets.  

Corollary: Suppose A, B, and C are finite sets. Then: 

|A ∪ B ∪ C | = |A| + |B| + |C| - |A ∩ B| - |A ∩ C| - |B ∩ C| + |A ∩ B ∩ C| 

                    !  

Consider a collection of  40 people where each of them is wearing 
something that is red or blue or green such that: 

20 wear something blue,   
20 wear something  red,  
20 wear something  green 
10 wear red and blue, 10 wear red and green, 10 wear blue and green.  

How many people in the class are wearing all 3 colours? 

We will come back to the Principle of inclusion and exclusion when we 
look at more counting problems. 


