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Week 3 

Principle of Mathematical Induction  

A proposition is defined as a statement that is 
either true or false. We will at times make a 
declarative statement as a proposition and then 
proceed to prove that it is true. Alternately we 
may provide an example (called a 
counterexample ) showing that the proposition 
is false. 

Let P be a proposition defined on the positive 
integers ; that is, P(n) is either true or false 
for each � . Suppose P has the following 
two properties:  
(i) P(1) is true. 
(ii) P(k+1) is true whenever P(k) is true.  

N
n 2 N
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Then by the principle of Mathematical 
Induction P is true for every positive integer 

. 

Mathematical induction is by far the most 
useful tool for proving results in 
computing.  

Note: Step (i) may be replaced by any integer 
b and then the principle of mathematical 
induction would hold for all integers greater 
than or equal to b. 

n 2 N
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Example:  

for all natural numbers n . 

We can verify that the equation holds for 
small values of n, say n = 1,2, 3. However this 
does not prove that the equation is true for all 
natural numbers n.  

Let P(n) be the proposition that the equation 
above is correct for the natural number n. We 
will use mathematical induction to prove that 
P(n) is true for every n ∈ ℕ.  

Base:    1 + 21 = 3 = 22 � 1

1 + 2 + 22 + · · ·+ 2n = 2n+1 � 1
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Induction Hypothesis : P(k) is true, for some 
fixed value k, such that  k ≥ 1. 

Induction Step: (Our goal is to prove that  
P(k+1) is true using the assumption that P(k) 
is true.) 

 The equality holds because we replace  

with  

using the assumption that P(k) is true. 

1 + 2 + · · ·+ 2k + 2k+1 = 2k+1 � 1 + 2k+1

1 + 2 + · · ·+ 2k

2k+1 � 1
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Now we do a bit of algebra and arithmetic.  

because integer addition is commutative. 

If you follow the chain of equalities we  have: 

and that P(k+1) is true.  

Therefore by the principle of mathematical 
induction we conclude that P(n) is true for all 
natural numbers n.  ◻  

= 2k+1 + 2k+1 � 1

= 2k+2 � 1

1 + 21 + · · ·+ 2k+1 = 2k+2 � 1
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"  
As an analogy think of an unending sequence 
of dominoes. You can be sure that all will fall 
if: 
1. The first one falls. (P(1)) 
2. And if the kth one falls it will knock over 
the k+1st, that is, P(k) true implies that P(k+1) 
is also true. 
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Let P(n) be the proposition that the number of 
two element subsets of a set of n elements is 
given by the formula: n(n-1)/2. 

We can show that P(n) is true for all natural 
numbers  n by using mathematical induction. 

Base: A set with 1 element has zero 2 element 
subsets, satisfying the equation 0 = 1(0)/2. 
Induction Hypothesis: P(k) is true for an 
arbitrary natural number k ≥ 1. 
Induction Step: Let S be a set with k+1 
elements, and let s ∈ S. We can partition the 
set of two element subsets of S into the 
subsets that include the element s and those 
that don’t. Let S’ = S \ {s} (that is S’ contains 
all the elements in S except for s.)  

Observe that the two element subsets of S’ are 
exactly the two elements subsets of S that do 
not contain s. Furthermore S’ has k elements 
so by the induction hypothesis S’ has k(k-1)/2 
two element subsets. 
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We can pair up s with every element of S’ to 
get the two element subsets of S that do 
contain s, so that makes k additional two 
element subsets.  

Summing these subsets yields the formula 

Therefore, we have shown that the proposition 
P(k) true implies that P(k+1) is true. So by the 
principle of mathematical induction we 
conclude that P(n) is true for all natural 
numbers n.  ⧠ 

k +
k(k � 1)

2
=

2k + k(k � 1)

2

=
2k + k2 � k

2

=
k2 � k

2

=
(k + 1)(k)

2
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You may be tempted to think that it is enough 
to just enumerate a few cases to convince 
yourself that a proposition is true.  

Let P(n) be the proposition that 3n < 1000 for 
all natural numbers n.  

3 × 1 < 1000 
3 × 2 < 1000 
 . 
 . 
 . 
3 × 333 < 1000 

So P(n) must be true. (Obviously NOT!) 
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Here’s another example where the first few 
cases lead to a false conclusion.  

Let P(n) be the proposition that n! < 2n is true 
for all n ∈ ℕ. 

Observe that:  

1! = 1 <2 
2! = 2 < 4 
3! = 6 < 8 

However, if we check one additional case, 

4! = 24 > 16.  

In fact we can use induction to prove that  

n! ≥ 2n, is true for all n ∈ ℕ, n ≥ 4.  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Students sometimes find proving results using 
inequalities ( that is relations like ≤,  <,  ≥ , >) hard 
to grasp. Don’t worry if you don’t get this the first 
time you read it. If you persist you should eventually 
understand this. 
Theorem: n! ≥ 2n, for n ∈ ℕ, n ≥ 4. 
Proof: Let P(n) be the proposition n! ≥ 2n, for 
n ≥ 4. 
Base:  P(4) is true because 4×3×2×1 ≥ 24 

Induction Hypothesis: P(k) is true for k ≥ 4.  
Induction Step: (k + 1) ! = k! (k+1) 

                                          ≥ 2k (k+1) (because       
         P(k) is true) 

                                          ≥ 2k 2 (because k ≥ 4) 

                                          ≥ 2k+1 

Therefore, we have shown that the proposition 
P(k) true implies that P(k+1) is true. So by the 
principle of mathematical induction we have 
P(n) is true for all natural numbers n ≥ 4.  ⧠ 
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Example: The sum of the first n odd numbers 
is n2. 

Let’s try it for some small values of n. 
n = 1 (1 = 12), n = 2 (1+ 3 = 4 = 22),  
n = 3 (1 + 3 + 5 = 9 = 32) 
This is NOT A PROOF! These simply show 
that the propositions P(1), P(2) and P(3) are 
true. 

Preliminaries: The kth odd number can be 
written as 2k-1. 
e.g.  1 = 2 ×1-1, 3 =2×2-1, 5=2×3-1 etc . This 1 2

fact will be useful for proving that the sum of 
the first n odd numbers is n2. 

At this point let’s take a closer look at what is 
meant by an odd number and define it 
precisely. 

Let n be a natural number.  

exempli gratia are Latin words meaning “for example”1

 et cetera are Latin words meaning “and so on”2
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Even Natural numbers
If 2 divides n, that is n/2 is a natural number 
then we say that n is even. For example 2/2 = 
1 so 2 is even, 4/2 = 2 so 4 is even. Every 
even natural number can then be expressed as 
a multiple of 2. For example 2 × 1 = 2, and 2 
× 2 = 4. So if k is a natural number 2k is even.  

Odd Natural numbers
When we study integers and integer arithmetic 
we will be better equipped to formally define 
what is meant be an odd number. For now we 
can simply define an odd natural number as 
any natural number that is 1 less than an even 
number, that is 2k-1.  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Theorem: The proposition P(n), the sum of 
the first n odd numbers is n2 for all natural 
numbers n. 
Proof: 
Base: P(1) 1 = 12, so P(1), the base case is 
true. 
Induction Hypothesis: Assume P(k) is true 
where k is any arbitrary  integer greater than 
or equal to 1.  
           That is, 1 + 3 + 5 + ... + 2k-1 = k2. 

Induction Step: Consider the sum of the first 
k+1 odd numbers.  

1 + 3 + 5 … + 2k-1 + 2k+1  

= k2 + 2k+1  ( because P(k) is assumed true ) 
                         
= (k+1)(k+1) ( factor ) 
= (k+1)2 

Therefore, we have shown that the proposition 
P(k) true implies that  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P(k+1) is true. So by the principle of 
mathematical induction we conclude that P(n) 
is true for all natural numbers n.  ⧠ 

Some of you may have learned to resolve this 
type of sequence of equations as follows.  

You can use this as a preliminary step but it is 
an abuse of notation. Once you have worked 
this preliminary step you can re-write the 
sequence by going down the right hand side, 
and then up the left hand side (omitting 
repeats). 

RHS LHS

1 + 3 + … +2K+1 = (k+1)2

k2 + 2k + 1  = (k+1) (k+1)
(k+1)(k+1)  = (k+1)(k+1)
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Theorem: The proposition P(n), the sum of 
the first n even natural numbers is n2 + n  for 
all natural numbers n. 
Proof: 
Base: P(1) 2 = 12 + 1, so P(1), the base case is 
true. 
Induction Hypothesis: Assume P(k) is true 
where k is any arbitrary  integer greater than 
or equal to 1.  
           That is, 2 + 4 + 6 + ... + 2k = k2 + k. 

Our goal in the Induction step is to show that  

2 + 4 + … + 2k + 2(k + 1) = (k+1)2 + k+1.  

Tip: (k+1)2 + k + 1  = k2 + 2k + 1 + k + 1 
   = k2 + 3k + 2 

Induction Step:  
2 + 4  … + 2k + 2(k + 1)  =  k2 + k + 2k + 2  
    =  k2 + 3k + 2 
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Therefore, we have shown that the proposition 
P(k) true implies that P(k+1) is true. So by the 
principle of mathematical induction we 
conclude that P(n) is true for all natural 
numbers n.  ⧠ 


