CISC-102
Fall 2017
Week 5

Relations (See chapter 2. of SN)

An ordered pair of elements $a, b$ is written as $(a, b)$.

NOTE: Mathematical convention distinguishes between
"( )" brackets -order is important - and " $\{$ \}" -- not ordered.
Example: $\{1,2\}=\{2,1\}$, but $(1,2) \neq(2,1)$.

## Product sets

Let $A$ and $B$ be two arbitrary sets. The set of all ordered pairs $(a, b)$ where $a \in A$ and $b \in B$ is called the product or Cartesian product or cross product of A and B. 1
The cross product is denoted as:

$$
A \times B=\{(a, b): a \in A \text { and } b \in B\}
$$

and is pronounced "A cross B ". It is common to denote $A \times A$ as $A^{2}$.
A "famous" example of a product set is $\mathbb{R}^{2}$, that is the product of the Reals, or the two dimensional real plane or Cartesian plane -- x and y coordinates.

[^0]
## Relations

Definition: Let A and B be arbitrary sets. A binary relation, or simply a relation from A to B is a subset of $\mathrm{A} \times \mathrm{B}$.
( We study relations to continue our exploration of mathematical definitions and notation.)

Example: Suppose $A=\{1,3,6\}$ and $B=\{1,4,6\}$
$A \times B=\{(a, b): a \in A$, and $b \in B\}$

$$
=\{(1,1),(1,4),(1,6),(3,1),(3,4),(3,6),(6,1),(6,4)(6,6)\}
$$

Example: Consider the relation $\leq$ on $\mathrm{A} \times \mathrm{B}$ where A and B are defined above. The subset of $\mathrm{A} \times$ $B$ in this relation are the pairs:
$\{(1,1),(1,4),(1,6),(3,4),(3,6),(6,6)\}$

That is, a pair $(\mathrm{a}, \mathrm{b})$ is in the relation $\leq$ whenever $\mathrm{a} \leq \mathrm{b}$.

## Vocabulary

When we have a relation on $\mathrm{S} \times \mathrm{S}$ (which is a very common occurrence) we simply call it a relation on S , rather than a relation on $\mathrm{S} \times \mathrm{S}$.

Let $\mathrm{A}=\{1,2,3,4\}$, we can define the following relations on A .
$\mathrm{R}_{1}=\{(1,1),(1,2),(2,3),(1,3),(4,4)\}$
$\mathrm{R}_{2}=\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\}$
$\mathrm{R}_{3}=\{(1,3),(2,1)\}$
$\mathrm{R}_{4}=\varnothing$
$R_{5}=A \times A=A^{2}$ (How many elements are there in $R_{5}$ ?)

## Properties of relations on a set $A$

Reflexive: A relation $R$ is $\underline{\text { reflexive }}$ if $(a, a) \in R$ for all $a \in A$.

Symmetric: A relation $R$ is symmetric if whenever $\left(a_{1}, a_{2}\right) \in R$ then $\left(a_{2}, a_{1}\right) \in R$.

Antisymmetric: A relation $R$ is antisymmetric if whenever $\left(a_{1}, a_{2}\right) \in R$, and $a_{1 \neq} a_{2}$,
then $\left(a_{2}, a_{1}\right) \notin R$.

An alternate way to define antisymmetric relations (as found in Schaum's Notes) is:

Antisymmetric: A relation $R$ is antisymmetric if whenever $\left(a_{1}, a_{2}\right) \in R$ and $\left(a_{2}, a_{1}\right) \in R$
then $\mathrm{a}_{1}=\mathrm{a}_{2}$.

NOTE: There are relations that are neither symmetric nor antisymmetric or both symmetric and antisymmetric.

Transitive: A relation $\mathbf{R}$ is transitive if whenever $\left(a_{1}, a_{2}\right) \in R$ and $\left(a_{2}, a_{3}\right) \in R$ then $\left(a_{1}, a_{3}\right) \in R$.

Let $\mathrm{A}=\{1,2,3,4\}$, we can define the following relations on A .
$\mathrm{R}_{1}=\{(1,1),(1,2),(2,3),(1,3),(4,4)\}$

NOT reflexive, NOT symmetric, antisymmetric, transitive
$\mathrm{R}_{2}=\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\}$
reflexive, symmetric, NOT antisymmetric, transitive
$\mathrm{R}_{3}=\{(1,3),(2,1)\}$
NOT reflexive, NOT symmetric, antisymmetric, NOT transitive
$\mathrm{R}_{4}=\varnothing$

NOT reflexive, symmetric, antisymmetric, transitive
$\mathrm{R}_{5}=\mathrm{A} \times \mathrm{A}=\mathrm{A}^{2}$ (How many elements are there in $\mathrm{R}_{5}$ ?)
reflexive, symmetric, transitive.

Consider the relation
$\mathrm{R}_{6}=\{(1,1),(1,2),(2,1),(2,3),(2,2),(3,3)\}$

NOT reflexive, NOT symmetric, NOT antisymmetric, NOT transitive

Consider the relations $<, \leq$, and = on the Natural numbers. (less than, less than or equal to, equal
to)

The relation $<$ on the Natural numbers $\{(a, b): a, b \in N, a<b\}$ is:

NOT reflexive, NOT symmetric, antisymmetric, transitive

The relation $\leq$ is on the Natural numbers $\{(\mathrm{a}, \mathrm{b}): \mathrm{a}, \mathrm{b} \in \mathrm{N}, \mathrm{a} \leq \mathrm{b}\}$ is:
reflexive, NOT symmetric, antisymmetric, transitive

The relation $=$ on the Natural numbers $\{(a, b): a, b \in N, a=b\}$ is:
reflexive, symmetric, antisymmetric, transitive

## Partial orders and equivalence relations

A relation R is called a partial order if R is reflexive, antisymmetric, and transitive.

A relation $R$ is called an equivalence relation if $R$ is reflexive, symmetric, and transitive.

## Functions as relations

A function can be viewed as a special case of relations.

A relation $R$ from $A$ to $B$ is a function if every element $a \in A$ belongs to a unique ordered pair

## Properties of the Integers

$(a, b)$ in $R$.
Let $\mathrm{a}, \mathrm{b} \in \mathbb{Z}$ then

1. if $c=a+b$ then $c \in \mathbb{Z}$
2. if $c=a-b$ then $c \in \mathbb{Z}$
3. if $c=(a)(b)$ then $c \in \mathbb{Z}$
4. if $c=a / b, b \neq 0$, then $c \in \mathbb{Q}$

If $a \& b$ are integers the quotient $a / b$ may not be an integer. For example if $c=1 / 2$, then $c$ is not an integer.

On the other hand with $c=6 / 3$ then $c$ is an integer.
We can say that there exists integers $\mathrm{a}, \mathrm{b}$ such that $\mathrm{c}=\mathrm{a} / \mathrm{b}$ is not an integer.
We can also say that for all integers $\mathrm{a}, \mathrm{b}, \mathrm{b} \neq 0$, we have $\mathrm{c}=\mathrm{a} / \mathrm{b}$ is a rational number.

## Divisibility

Let $\mathrm{a}, \mathrm{b} \in \mathbb{Z}, \mathrm{a} \neq 0$.
If $\mathrm{c}=\frac{b}{a}$ is an integer,
or alternately if $\mathrm{c} \in \mathbb{Z}$ such that $\mathrm{b}=\mathrm{ca}$ then we say that a divides $b$ or equivalently, b is divisible by a, and this is written


NOTE: Recall long division:
$\mathrm{a} \mid \mathrm{b}$
Remainder $\xrightarrow{\longrightarrow} 7$

Referring to the long division example, $b=32$, is the divisor $a=487$ is the dividend. The quotient $\mathrm{q}=15$ and the remainder $\mathrm{r}=7$.

In this case b does not divide a or equivalently a is not divisible by b .

This can be notated as:
b $\downarrow \mathrm{a}$
and we can write $\mathrm{a}=\mathrm{bq}+\mathrm{r}$ or, $487=(32)(15)+7$

## Division Algorithm Theorem

Let $\mathrm{a}, \mathrm{b} \in \mathbb{Z}, \mathrm{b} \neq 0$ there exists $\mathrm{q}, \mathrm{r} \in \mathbb{Z}$, such that:

$$
\mathrm{a}=\mathrm{bq}+\mathrm{r}, 0 \leq \mathrm{r}<|\mathrm{b}|
$$

NOTE: The remainder in the Division Algorithm Theorem is always positive.

## Notation

The absolute value of b denoted by
|b|
is defined as:

$$
\begin{aligned}
|\mathrm{b}| & =\mathrm{b} \text { if } \mathrm{b} \geq 0 \\
\text { and }|\mathrm{b}| & =-\mathrm{b} \text { if } \mathrm{b}<0 .
\end{aligned}
$$

Therefore for values
$a=22, b=7$, and $a=-22, b=-7$ we get
$22=(7)(3)+1$
but
$-22=(-7)(4)+6$.

## Divisibility Theorems.

Let $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbb{Z}$. If $\mathrm{a} \mid \mathrm{b}$ and $\mathrm{b} \mid \mathrm{c}$ then $\mathrm{a} \mid \mathrm{c}$.

Proof:

Suppose $\mathrm{a} \mid \mathrm{b}$ then there exists an integer j such that
(1) $b=a j$

Similarly if $\mathrm{b} \mid \mathrm{c}$ then there exists an integer k such that
(2) $c=b k$

Replace $b$ in equation (2) with aj to get
(3) $\mathrm{c}=\mathrm{ajk}$

Thus we have proved that if $\mathrm{a} \mid \mathrm{b}$ and $\mathrm{b} \mid \mathrm{c}$ then $\mathrm{a} \mid \mathrm{c}$.

## Divisibility Theorems.

Let $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbb{Z}$. If $\mathrm{a} \mid \mathrm{b}$ then $\mathrm{a} \mid \mathrm{bc}$.

Proof:
Since $\mathrm{a} \mid \mathrm{b}$ there exists an integer j such that
$b=a j$, and $b c=a j c$ for all (any) $c \in \mathbb{Z}$.
It should be obvious that $\mathrm{a} \left\lvert\, \mathrm{ajc}\left(\frac{a j c}{a}=\mathrm{jc}\right.$ is an integer $)\right.$
so a | bc .

## Divisibility Theorems.

Let $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbb{Z}$. If $\mathrm{a} \mid \mathrm{b}$ and $\mathrm{a} \mid \mathrm{c}$. Then $\mathrm{a} \mid(\mathrm{b}+\mathrm{c})$ and $\mathrm{a} \mid(\mathrm{b}-\mathrm{c})$.

Proof:

Since $\mathrm{a} \mid \mathrm{b}$ there exist $\mathrm{a} \mathfrak{Z} \in \mathbb{Z}$ such that $\mathrm{b}=\mathrm{aj}$.

Since $\mathrm{a} \mid \mathrm{c}$ there exist $\mathrm{a} \in \mathbb{Z}$ such that $\mathrm{c}=\mathrm{ak}$.
Therefore $b+c=(a j+a k)=a(j+k)$.

Obviously a $\mid \mathrm{a}(\mathrm{j}+\mathrm{k})$ so $\mathrm{a} \mid(\mathrm{b}+\mathrm{c})$.
Similarly a $\mid \mathrm{a}(\mathrm{j}-\mathrm{k})$ so $\mathrm{a} \mid(\mathrm{b}-\mathrm{c})$.

## More Divisibility Theorems.

If $\mathrm{a} \mid \mathrm{b}$ and $\mathrm{b} \neq 0$ then $|\mathrm{a}| \leq|\mathrm{b}|$.

If $\mathrm{a} \mid \mathrm{b}$ and $\mathrm{b} \mid \mathrm{a}$ then $|\mathrm{a}|=|\mathrm{b}|$.
If $\mathrm{a} \mid 1$ then $|\mathrm{a}|=1$.

## Prime Numbers

Definition: A positive integer $\mathrm{p}>1$ is called a prime number if its only divisors are $1,-1$, and $\mathrm{p},-$ p.

The first 10 prime numbers are:
$2,3,5,7,11,13,17,19,23,29, \ldots$
Definition: If an integer $\mathrm{c}>2$ is not prime, then it is composite. Every composite number c can be written as a product of two integers $\mathrm{a}, \mathrm{b}$ such that $\mathrm{a}, \mathrm{b} \notin\{1,-1, \mathrm{c},-\mathrm{c}\}$.

Determining whether a number, $n$, is prime or composite is difficult computationally. A simple method (which is in essence of the same computational difficulty as more sophisticated methods) checks all integers $k, 2 \leq k \leq \sqrt{ } n$ to determine divisibility.

Example: Let $n=143$
2 does not divide 143
3 does not divide 143
4 does not divide 143
5 does not divide 143
6 does not divide 143
7 does not divide 143
8 does not divide 143
9 does not divide 143
10 does not divide 143
11 divides $143,11 \times 13=143$

Theorem: Every integer $n>1$ is either prime or can be written as a product of primes.

## For example:

$12=2 \times 2 \times 3$.

17 is prime.
$90=2 \times 5 \times 3 \times 3$.
$143=11 \times 13$.
$147=3 \times 7 \times 7$.
$330=2 \times 5 \times 3 \times 11$.
Note: If factors are repeated we can use exponents.
$48=2^{4} \times 3$.

Theorem: Every integer $n>1$ is either prime or can be written as a product of primes.
Proof:
(1) Suppose there is an integer $\mathrm{k}>1$ that is the largest integer that is the product of primes. This then implies that the integer $\mathrm{k}+1$ is not prime or a product of primes.
(2) If $\mathrm{k}+1$ is not prime it must be composite and:

$$
\mathrm{k}+1=\mathrm{ab}, \mathrm{a}, \mathrm{~b} \in \mathbb{Z}, \mathrm{a}, \mathrm{~b} \notin\{1,-1, \mathrm{k}+1,-(\mathrm{k}+1)\} .
$$

(3) Observe that $|a|<\mathrm{k}+1$ and $|b|<\mathrm{k}+1$, because $\mathrm{a} \mid \mathrm{k}+1$ and $\mathrm{b} \mid \mathrm{k}+1$. We assume that $\mathrm{k}+1$ is the smallest positive integer that is not prime or the product of primes, therefore $|\mathrm{a}|$ and $|\mathrm{b}|$ are prime or a product of primes.
(4) Since $\mathrm{k}+1$ is a product of a and b it follows that it too is a product of primes.
(5) Thus we have contradicted the assumption that there is a largest integer that is the product of primes, and we can therefore conclude that every integer $\mathrm{n}>1$ is either prime or written as a product of primes.

## Mathematical Induction (2nd form)

Let $\mathrm{P}(\mathrm{n})$ be a proposition defined on a subset of the Natural numbers $(\mathrm{b}, \mathrm{b}+1, \mathrm{~b}+2, \ldots)$ such that:
i) $\mathrm{P}(\mathrm{b})$ is true
(Base)
ii) Assume $P(j)$ is true for all $\mathrm{j}, \mathrm{b} \leq \mathrm{j} \leq \mathrm{k}$.
(Induction Hypothesis)
iii) Use Induction Hypothesis to show that $\mathrm{P}(\mathrm{k}+1)$ is true. (Induction Step)

NOTE: Go back to all of the proofs using mathematical induction that we have seen so far and replace the assumption
(1) Assume $P(k)$ is true for $k \geq b$. (b is the base case value) by
(2) Assume $P(j)$ is true for all $j, b \leq j \leq k$."
and the rest of the proof can remain as is.

Assumption (2) above is stronger than assumption (1). Sometimes this form of induction is called strong induction.

NOTE: A stronger assumption makes it easier to prove the result.

Let $\mathrm{P}(\mathrm{n})$ be the proposition:
$\sum_{i=1}^{n} 2^{i}=2+2^{2}+\cdots+2^{n}=2^{n+1}-2$

Theorem: $\mathrm{P}(\mathrm{n})$ is true for all $n \in \mathbb{N}$.

Proof:
Base: $P(1)$ is $2=2^{2}-2$ which is clearly true.
Induction Hypothesis: $P(j)$ is true for $\mathrm{j}, 1 \leq \mathrm{j} \leq \mathrm{k}$.
Induction Step:

$$
\begin{aligned}
& \sum_{i=1}^{k+1} 2^{i}=2^{k+1}-2+2^{k+1} \\
& \quad=2\left(2^{k+1}\right)-2 \\
& \quad=2^{k+2}-2
\end{aligned}
$$

Theorem: Every integer $n>1$ is either prime or can be written as a product of primes.

Proof: (Mathematical Induction of the $2^{\text {nd }}$ form) Let $\mathrm{P}(\mathrm{n})$ be the proposition that all natural numbers $\mathrm{n} \geq 2$ are either prime or the product of primes.

Base: $\mathrm{n}=2, \mathrm{P}(2)$ is true because 2 is prime.

## Induction Hypothesis:

(1) Assume that $\mathrm{P}(\mathrm{j})$ is true, for all $\mathrm{j}, 2 \leq \mathrm{j} \leq \mathrm{k}$. Induction Step: Consider the integer $\mathrm{k}+1$.
(2) Observe that if $k+1$ is prime $\mathrm{P}(\mathrm{k}+1)$ is true, so consider the case where $\mathrm{k}+1$ is composite. That is: $\mathrm{k}+1=\mathrm{ab}, \mathrm{a}, \mathrm{b} \in \mathbb{Z}, \mathrm{a}, \mathrm{b} \notin\{1,-1, \mathrm{k}+1,-(\mathrm{k}+1)\}$.
(3) Therefore, $|a|<\mathrm{k}+1$ and $|b|<\mathrm{k}+1$.

So $|a|$ and $|\mathrm{b}|$ are prime or a product of primes.
(4) Since $k+1$ is a product of $a$ and $b$ it follows that it too is a product of primes.
(5) Therefore, by the 2 nd form of mathematical induction we can conclude that $\mathrm{P}(\mathrm{n})$ is true for all $n \geq 2$.

## Well-Ordering Principle

In our initial proof that shows that integers greater than 2 are either prime or a product of primes we assumed that if that wasn't true for all integers greater than 2 , then there was a smallest integer where the proposition is false. (we called that integer k.) This statement may appear to be obvious, but there is a mathematical property of the positive integers at play that makes this true.

Theorem: Well Ordering Principle: Let $S$ be a non-empty subset of the positive integers. Then $S$ contains a least element, that is, S contains an element $\mathrm{a} \leq \mathrm{s}$ for all $\mathrm{s} \in \mathrm{S}$.

- Observe that S could be an infinite set.
- Well ordering does NOT apply to subsets of $\mathbb{Z}, \mathbb{Q}$, or $\mathbb{R}$. It is a special property of the positive integers.

NOTE: The Well Ordering Principle can be used to prove both forms of the Principle of Mathematical Induction.

In essence the statement "use the proposition $\mathrm{P}(\mathrm{k})$ to show that $\mathrm{P}(\mathrm{k}+1)$ is true" uses an underlying assumption:
"Should there be a value of $n$ where the proposition is false then there must be a smallest value of $n$ where the proposition is false"

In all of our induction proofs so far the value $k+1$ plays the role of that smallest value of $n$ where the proposition may be false. For all other values $j, b \leq j \leq k$, we can assume that $\mathrm{P}(j)$ is true. In the induction step we show that $\mathrm{P}(k+1)$ is also true, in essence showing that there is no smallest value of n where the proposition is false. And by well ordering this implies that the result is true for all values of $n$.

Theorem: There exists a prime greater than $n$ for all positive integers $n$. (We could also say that there are infinitely many primes.)

Proof: Consider $y=n!$ and $x=n!+1$. Let $p$ be a prime divisor of $x$, such that $p \leq n$. This implies that $p$ is also a divisor of y , because $n$ ! is the product of all natural numbers from 1 to $n$. So we have $p \mid x$ and $p \mid y$. According to one of the divisibility theorems we have $p \mid x-y$. But $x-y=1$ and the only divisor of 1 is -1 , or 1 , both not prime. So there are no prime divisors of $x$ less than $n$. And since every integer is either prime or a product if primes, we either have $x>n$ is prime, or there exists a prime $p, p>n$ in the prime factorization of $x$.

Theorem: There is no largest prime.
(Proof by contradiction.)
Suppose there is a largest prime. So we can write down all of the finitely many primes as:
$\left\{D_{1}, D_{2}, \ldots, P_{\omega}\right\}$.

Now let $n=p_{1} \times p_{2} \times \cdots \times p_{\omega}+1$.

Observe that $n$ must be larger the $P_{\omega}$ the largest prime. Therefore $n$ is composite and is a product of primes. Let $P_{k}$ denote a prime factor of $n$. Thus we have
$p_{k} \mid n$
And since $p_{k} \in\left\{D_{1}, D_{2}, \ldots, P_{\omega}\right\}$ we also have
$p_{k} \mid(n-1)$

We know that $p_{k} \mid n$ and $p_{k} \mid(n-1)$ implies that $p_{k} \mid \mathrm{n}-(n-1)$ or $p_{k} \mid 1$. But no integer divides 1 except 1 , and 1 is not prime, so $p_{k} \mid 1$ is impossible, and raises a mathematical contradiction. This implies that our assumption that $P_{\omega}$ is the largest prime is false, and so we conclude that there is no largest prime.


[^0]:    ${ }^{1}$ Réne Descartes French philosopher mathematician (1596-1650)

