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CISC-102 
Fall 2017 
Week 5 

Relations (See chapter 2. of SN) 

An ordered pair  of elements a,b is written as (a,b).  

NOTE: Mathematical convention distinguishes between  

“( )” brackets -order is important – and “{ }” -- not ordered. 

Example: {1,2} = {2,1}, but (1,2) ≠ (2,1). 
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Product sets 

Let A and B be two arbitrary sets. The set of all ordered pairs (a,b) where  a  ∈ A  and b ∈ B is 

called the product  or Cartesian product   or cross product of A and B.  
1

The cross product is denoted as: 

                            A × B = {(a,b) : a  ∈ A  and b ∈ B }  

and is pronounced “A cross B”.  It is common to denote A × A as A2. 

A “famous” example of a product set is , that is the product of the Reals, or the two 

dimensional real plane or Cartesian plane -- x and y coordinates. 

R2

 Réne Descartes French philosopher mathematician (1596 - 1650)1
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Relations 

Definition: Let A and B be arbitrary sets. A binary relation, or simply a relation from A to B is a 

subset of A × B. 

( We study relations to continue our exploration of mathematical definitions and notation. ) 

Example: Suppose A = {1,3,6} and B = {1,4,6}  

A × B = {(a,b) : a ∈ A, and b ∈ B }  

           = {(1,1),(1,4),(1,6),(3,1),(3,4),(3,6),(6,1),(6,4)(6,6)} 

Example: Consider the relation ≤ on A × B where A and B are defined above.  The subset of A × 

B  in this relation are the pairs: 

{(1,1),(1,4),(1,6),(3,4),(3,6),(6,6)} 

That is, a pair (a,b) is in the relation ≤ whenever a ≤ b.  
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Vocabulary 
When we have a relation on S × S (which is a very common occurrence) we simply call it a 
relation on S, rather than a relation on  S × S. 

Let A = {1,2,3,4}, we can define the following relations on A.  

R1 = {(1,1), (1,2), (2,3), (1,3), (4,4)} 

R2 = {(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)}  

R3 = {(1,3), (2,1)} 

R4 = ∅ 

R5 = A × A = A2  (How many elements are there in R5 ?)  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Properties of relations on a set A 

Reflexive: A relation R is reflexive if (a,a) ∈ R for all a ∈ A.  

Symmetric: A relation R is symmetric if whenever (a1, a2) ∈ R then (a2, a1) ∈ R. 

Antisymmetric: A relation R is antisymmetric if whenever (a1, a2) ∈ R, and  a1 ≠ a2,  

then (a2, a1) ∉ R. 

An alternate way to define antisymmetric relations (as found in Schaum’s Notes) is: 

Antisymmetric: A relation R is antisymmetric if whenever (a1, a2) ∈ R and (a2, a1) ∈ R  

then a1 =  a2. 

NOTE: There are relations that are neither symmetric nor antisymmetric or both symmetric and 

antisymmetric. 

Transitive: A relation R is transitive if whenever (a1, a2) ∈ R and (a2, a3) ∈ R then (a1, a3) ∈ R. 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Let A = {1,2,3,4}, we can define the following relations on A.  

R1 = {(1,1), (1,2), (2,3), (1,3), (4,4)}  

NOT reflexive, NOT symmetric, antisymmetric, transitive 

R2 = {(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)}  

reflexive, symmetric, NOT antisymmetric, transitive 

R3 = {(1,3), (2,1)} 

NOT reflexive, NOT symmetric, antisymmetric, NOT transitive 

R4 = ∅ 

NOT reflexive, symmetric, antisymmetric, transitive 

R5 = A × A = A2  (How many elements are there in R5 ?) 

reflexive, symmetric, transitive.  

Consider the relation  

R6 = {(1,1), (1,2), (2,1), (2,3),(2,2), (3,3)} 

NOT reflexive, NOT symmetric, NOT antisymmetric, NOT transitive 
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Consider the relations <,  ≤, and = on the Natural numbers. (less than, less than or equal to, equal 

to) 

The relation < on the Natural numbers {(a,b) : a,b ∈ N, a < b} is:  

NOT reflexive, NOT symmetric, antisymmetric, transitive 

The relation ≤ is on the Natural numbers {(a,b) : a,b ∈ N, a ≤ b}  is:  

reflexive, NOT symmetric, antisymmetric, transitive 

The relation = on the Natural numbers {(a,b) : a,b ∈ N, a = b} is: 

reflexive, symmetric, antisymmetric, transitive 

Partial orders and equivalence relations

A relation R is called a partial order  if R is reflexive, antisymmetric, and transitive.  

A relation R is called an equivalence relation if R is reflexive, symmetric, and transitive.  

Functions as relations

A function can be viewed as a special case of relations.   

A relation R from A to B is a function if every element a ∈ A belongs to a unique ordered pair 

(a,b) in R. 
Properties of the Integers 

Let a,b ∈ ℤ then  
1. if c = a + b then c ∈ ℤ 
2. if c = a - b then c ∈ ℤ 
3. if c = (a)(b) then c ∈ ℤ 
4. if c  = a/b, b ≠ 0,  then c ∈ ℚ 

If a & b are integers the quotient a/b may not be an integer. For example if c = 1/2, then c is not 
an integer. 
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On the other hand with c = 6/3 then c is an integer.  

We can say that there exists integers a,b such that c = a/b is not an integer.  

We can also say that for all integers a,b, b ≠ 0, we have c = a/b is a rational number. 
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Divisibility 

Let a,b ∈ ℤ, a ≠ 0.  

If  c =  is an integer,  

or alternately if c ∈ ℤ such that b = ca 
then we say that a divides b or equivalently,  
 b is divisible by a, and this is written  

a ∣ b  

NOTE: Recall long division: 

Referring to the long division example, b = 32, is the divisor a = 487 is the dividend. The 
quotient q = 15 and the remainder  r = 7.  

In this case b does not divide a  
or equivalently a is not divisible by b.  

This can be notated as: 

b ∤ a 
and we can write a = bq + r or, 487 = (32) (15) + 7  

Division Algorithm Theorem 

Let a,b ∈ ℤ, b ≠ 0 there exists q,r ∈ ℤ, such that: 

a = bq + r, 0 ≤  r < | b | 

NOTE: The remainder in the Division Algorithm Theorem is always positive.   

b
a
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Notation 

The absolute value of b denoted by  
| b | 

is defined as:  
      | b | = b  if b ≥ 0  
      and  | b | = -b if b < 0. 

Therefore for values  

a = 22, b = 7, and a = -22, b = -7 we get  

22 = (7)(3) + 1 

but  

-22 = (-7)(4) + 6. 
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Divisibility Theorems.  

Let a,b,c ∈ ℤ.  If a ∣ b and b ∣ c then a ∣ c.  

Proof: 

Suppose  a ∣ b then there exists an integer j such that  

(1) b = aj 

Similarly if  b ∣ c then there exists an integer k such that  

( 2) c = bk 

Replace b in equation ( 2) with aj to get  

( 3) c = ajk 

Thus we have proved that if a ∣ b and b ∣ c then a ∣ c. ◻ 
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Divisibility Theorems.  

Let a,b,c ∈ ℤ.  If a ∣ b then a ∣ bc.  

Proof: 
Since  a ∣ b there exists an integer j such that  

b = aj, and bc = ajc for all (any) c ∈ ℤ. 

It should be obvious that    a ∣ ajc  (  = jc is an integer) 

so a | bc . ◻ 

ajc
a
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Divisibility Theorems.  

Let a,b,c ∈ ℤ.  If a ∣ b and a ∣ c.  Then a ∣ (b + c) and  
a ∣ (b - c). 

Proof:  

Since a | b there exist a j ∈ ℤ such that b = aj. 

Since a | c there exist a k ∈ ℤ such that c = ak. 

Therefore b + c = (aj + ak) = a(j + k). 

Obviously  a | a(j + k) so a ∣ (b + c). 

Similarly a | a(j - k) so a ∣ (b - c).  ◻ 

More Divisibility Theorems. 

If  a | b and b ≠ 0 then | a | ≤ | b|.  

If  a | b and b | a then | a | = | b |. 

If a | 1 then | a | = 1.  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Prime Numbers 
Definition: A positive integer p > 1 is called a prime number if its only divisors are 1, -1, and p, -
p.  

The first 10 prime numbers are: 

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ... 

Definition: If an integer c > 2  is not prime, then it is composite. Every composite number c can 
be written as a product of two integers a,b such that a,b ∉ {1,-1, c, -c}. 
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Determining whether a number, n,  is prime or composite is difficult computationally. A simple 
method (which is in essence of the same computational difficulty as more sophisticated methods) 
checks all integers k,  2 ≤ k ≤ √n to determine divisibility.  

Example: Let n = 143 

2 does not divide 143 
3 does not divide 143 
4 does not divide 143 
5 does not divide 143 
6 does not divide 143 
7 does not divide 143 
8 does not divide 143 
9 does not divide 143 
10 does not divide 143 
11divides 143, 11 × 13 = 143 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Theorem: Every integer n  > 1 is either prime or can be written as a product of primes. 

For example: 

12 = 2 × 2 × 3. 

17 is prime. 

90 = 2 × 5 × 3 × 3. 

143 = 11 × 13. 

147 = 3 × 7 × 7. 

330 = 2 × 5 × 3 × 11. 

Note: If factors are repeated we can use exponents. 

48 = 24 × 3. 
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Theorem: Every integer n  > 1 is either prime or can be written as a product of primes. 

Proof:  
(1)  Suppose there is an integer k  > 1 that is the largest  integer that is the product of primes. 

This then implies that the integer k+1 is not prime or a product of primes.  
 

(2)  If k+1 is not prime it must be composite and:  
  k+1 = ab,  a,b ∈ ℤ,  a,b ∉ {1,-1, k+1, -(k+1)}. 

(3)  Observe that  |a| <  k+1 and |b| <  k+1, because a | k+1 and b | k+1. We assume that k+1 is 
the smallest positive integer that is not prime or the product of primes, therefore  |a| and |b| 
are prime or a product of primes.  
  

(4)  Since k+1 is a product of a and b it follows that it too is a product of primes.  
  

(5)  Thus we have contradicted the assumption that there is a largest integer that is the product of 
primes, and we can therefore conclude that every integer n > 1 is either prime or written as a 
product of primes.  ◻  

�17



Week 5 page !  of !18 24

Mathematical Induction (2nd form) 

Let P(n) be a proposition defined on a subset of the Natural numbers (b, b+1, b+2, ...)  such that: 

i) P(b) is true  
(Base)  

ii)  Assume P(j) is true for all j, b ≤ j ≤ k.  
 (Induction Hypothesis) 

iii)  Use Induction Hypothesis to show that P(k+1) is true.  
  (Induction Step) 

NOTE: Go back to all of the proofs using mathematical induction that we have seen so far and 
replace the assumption  
(1) Assume P(k) is true for k ≥ b. (b is the base case value) by  
(2) Assume P(j) is true for all j, b ≤ j ≤ k.” 

and the rest of the proof can remain as is. 

Assumption (2) above is stronger than assumption (1). Sometimes this form of induction is 
called strong induction.  

NOTE: A stronger assumption makes it easier to prove the result.   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Let P(n) be the proposition: 

 

Theorem: P(n) is true for all . 

Proof: 

Base: P(1) is    which is clearly true. 

Induction Hypothesis: P(j) is true for j, 1 ≤ j ≤ k. 

Induction Step:  

                  (because P(k) is true)  

                           

                                     ⧠
 

Pn
i=1 2

i = 2 + 22 + · · ·+ 2n = 2n+1 � 2

n 2 N

2 = 22 � 2

k+1X

i=1

2i = 2k+1 � 2 + 2k+1

= 2(2k+1)� 2

= 2k+2 � 2
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Theorem: Every integer n  > 1 is either prime or can be written as a product of primes.  

Proof: (Mathematical Induction of the 2nd form) Let P(n) be the proposition that all natural 
numbers n ≥ 2 are either prime or the product of primes. 

Base: n = 2, P(2) is true because 2 is prime. 
Induction Hypothesis:  
(1) Assume that P(j) is true, for all j, 2 ≤ j ≤ k. 
Induction Step: Consider the integer k+1. 

(2) Observe that if k+1 is prime P(k+1) is true, so consider the case where k+1 is composite. That 
is: k+1 = ab,  a,b ∈ ℤ,  a,b ∉ {1,-1, k+1, -(k+1)}.   
(3) Therefore, |a| <  k+1 and |b| <  k+1.  
      So |a| and |b| are prime or a product of primes.  
(4) Since k+1 is a product of a and b it follows that it too is a product of primes.  
(5) Therefore, by the 2nd form of mathematical induction we can conclude that P(n) is true for 
all n ≥ 2. ◻  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Well-Ordering Principle 

In our initial proof that shows that integers greater than 2 are either prime or a product of primes 
we assumed that if that wasn’t true for all integers greater than 2, then there was a smallest 
integer where the proposition is false. (we called that integer k.) This statement may appear to be 
obvious, but there is a mathematical property of the positive integers at play that makes this true.  

Theorem: Well Ordering Principle: Let S be a non-empty subset of the positive integers. Then S 
contains a least element, that is, S contains an element a ≤ s for all s ∈ S. 

• Observe that S could be an infinite set. 
• Well ordering does NOT apply to subsets of ℤ, ℚ, or ℝ. It is a special property of the positive 

integers. 
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NOTE: The Well Ordering Principle can be used to prove both forms of the Principle of 
Mathematical Induction. 

In essence the statement “use the proposition  P(k) to show that P(k+1) is true” uses an 
underlying assumption: 

 “Should there be a value of n where the proposition is false then there must be a smallest 
value of n where  the proposition is false” 

In all of our induction proofs so far the value k+1 plays the role of that smallest value of n where 
the proposition may be false. For all other values j, b ≤ j ≤ k, we can assume that P(j) is true. In 
the induction step we show that P(k+1) is also true, in essence showing that there is no smallest 
value of n where the proposition is false. And by well ordering this implies that the result is true 
for all values of n. 
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Theorem: There exists a prime greater than n for all positive integers n. (We could also say that 
there are infinitely many primes.)  

Proof: Consider y = n! and x = n! + 1. Let p be a prime divisor of x, such that p ≤ n. This implies 
that p is also a divisor of y, because n! is the product of all natural numbers from 1 to n.  So we 
have p | x and p | y. According to one of the divisibility theorems we have  
p | x - y. But x - y = 1 and the only divisor of 1 is -1, or 1, both not prime. So there are no prime 
divisors of x less than n. And since every integer is either prime or a product if primes, we either 
have x > n is prime, or there exists a prime p, p > n in the prime factorization of x. ◻ 
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Theorem: There is no largest prime. 

(Proof by contradiction.) 

Suppose there is a largest prime. So we can write down all of the finitely many primes as: 
{ }.  

Now let n =  . 

Observe that n must be larger the  the largest prime. Therefore n is composite and is a 

product of primes. Let  denote a prime factor of n. Thus we have  

pk ∣ n  

And since pk ∈ { } we also have  

pk ∣ (n-1) 

We know that pk ∣ n and pk ∣ (n-1) implies that pk ∣ n - (n-1) or pk ∣ 1. But no integer divides 1 
except 1, and 1 is not prime, so pk ∣ 1 is impossible, and raises a mathematical contradiction. This 
implies that our assumption that  is the largest prime is false, and so we conclude that there 
is no largest prime. ◻ 

p1, p2, . . . , p!

p1 ⇥ p2 ⇥ · · ·⇥ p! + 1

p!
pk

p1, p2, . . . , p!

p!
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