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CISC-102 
Fall 2017 
Week 6 

We will see two different, yet similar, proofs that there are infinitely many prime numbers. One 
proof would surely suffice. However, seeing two different ways of proving the same result is 
instructive, as it demonstrates that there are often many ways in which to make a mathematical 
argument. I prefer the first proof, but that’s simply a matter of taste. Which proof do you prefer?.  

Theorem: There exists a prime greater than n for all positive integers n. (We could also say that 
there are infinitely many primes.)  

Proof: (Given any value n we construct a larger value that is either prime or has a prime factor 
greater than n.) 

Consider  
y = n! and x = n! + 1.  

Let p be a prime divisor of x, such that p ≤ n. This implies that p is also a divisor of y, because n! 
is the product of all natural numbers from 1 to n. So we have  

p | x and p | y.  

According to one of the divisibility theorems we have  

p | x - y.  

But x - y = 1 and the only divisor of 1 is -1, or 1, both not prime. So there are no prime divisors 
of x less than n. And since every integer is either prime or a product if primes, we either have x > 
n is prime, or there exists a prime p, p > n in the prime factorization of x. ◻ 
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Theorem: There is no largest prime. 

Proof: (Proof by contradiction.) 

Suppose there is a largest prime. So we can write down all of the finitely many primes as: 
{ }.  

Now let n =  . 

Observe that n must be larger the  the largest prime. Therefore n is composite and is a 

product of primes. Let  denote a prime factor of n. Thus we have  

pk ∣ n  

And since pk ∈ { } we also have  

pk ∣ (n-1) 

We know that pk ∣ n and pk ∣ (n-1) implies that pk ∣ n - (n-1) or pk ∣ 1. But no integer divides 1 
except 1, and 1 is not prime, so pk ∣ 1 is impossible, and raises a mathematical contradiction. This 
implies that our assumption that  is the largest prime is false, and so we conclude that there 
is no largest prime. ◻ 

p1, p2, . . . , p!

p1 ⇥ p2 ⇥ · · ·⇥ p! + 1

p!
pk

p1, p2, . . . , p!

p!
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Greatest Common Divisor 

Consider any two integers, a,b, at least one non-zero. If we list the positive divisors in numeric 
order from smallest to largest, we would get two lists: 

a: (1, c1, c2, ... |a|) 
b: (1, d1, d2, ... |b|) 

Since both lists must contain the number 1, we see that 1 is a common divisor of a and b. Since 
the greatest divisor of a is |a| and the greatest divisor of b is |b|, we can deduce that amongst the 
common divisors of a and b, there must be one that is the greatest. 

Thus we can say that given two integers a,b, at least one not zero, there is a unique greatest 
common divisor of a and b. 

Computing the greatest common divisor of a non-zero integer a, and 0, is somewhat boring 
because all non-zero integers divide 0, so the greatest common divisor of a and 0 is always |a|. So 
let’s just assume from now on that neither a nor b is 0. 

Example:  
Let a = 111, and b = 250. We can construct sorted lists of divisors of a and b yielding: 

a: (1, 3, 37, 111) 
b: (1, 2, 5, 10, 25, 50, 125, 250) 

And by inspection we can deduce that 1 is the greatest common divisor of a and b. When the 
greatest common divisor of two numbers a,b is 1 we say that a and b are relatively prime or 
coprime. 

Another example: 
Let a = 250, and b = 575. We can construct sorted lists of divisors of a and b yielding: 

a: (1, 2, 5, 10, 25, 50, 125, 250) 
b:(1, 5, 23, 25, 115, 575) 

And by inspection we can deduce that 25 is the greatest common divisor of a and b.  

This method of obtaining all divisors of a and b is very computationally intensive, and would 
make some essential steps of public key encryption schemes un-feasible. Remarkably an 
algorithm invented by Euclid  
(~ 300 BC) finds greatest common divisors in a much more efficient way.  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Euclid’s Algorithm 
Suppose a,b are non-zero integers. We can define a function on the integers:  

gcd(a,b)  

that returns the greatest common divisor of a and b. It will be convenient to further assume that |
a| ≥ |b|.  

Euclid’s algorithm to compute gcd(a,b) is way more efficient than computing all the divisors of a 
and b, and is based on the following observation. 

Euclid’s Theorem: 
Let a,b,q,r be positive integers such that a = qb + r  then  

   gcd (a,b) = gcd(b,r) 

For example: a = 575, b = 250. 

575 = (2)(250) + 75  (Use long division to get q & r) 

So the claim is that gcd(575, 250) = gcd(250,75). 

This can be verified by listing the divisors of 250 and 75. 

250: (1, 2, 5, 10, 25, 50, 125, 250) 
75: (1, 3, 5, 15, 25, 75)  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We can now “iterate” this process by  renaming a = 250, b = 75 and repeat the previous 
calculation. That is: 

250 = (3)(75) + 25 

We can again verify that gcd(250,75) = gcd(75,25). 

Let’s repeat this again, so a = 75 and b = 25 

75 = (3)(25) + 0 

so we have gcd(75,25) = gcd(25,0), and we have already seen that the greatest common divisor 
of any non-zero integer a and 0 is |a|.  

Therefore by Euclid’s algorithm we have  
gcd(575,250) = 25. 

NOTE: Euclid’s algorithm is given for positive integers. However,   

gcd(a,b) = gcd (-a,b) = gcd(a,-b) = gcd(-a,-b) 

so there is no loss of generality if we simply focus on positive integers.  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Observe that as a side effect of Euclid’s algorithm we can always find integers x,y such that 
gcd(a,b) = ax + by. 

This can be illustrated with the previous example. 

(1) 575  = (2) 250 + 75 implies 75 = 575 - (2)250 
(2) 250  = (3) 75  +  25 implies 25 = 250 - (3)75 
(3)   75  = (3) 25  +   0 

Now we can write gcd(575,250) = 25 as:  

25 = 250 - (3)75                      (Using (2) above) 
25 = 250 - (3)[575 - (2)250]   (Using (1) above) 
25 = (7)250 - (3)575               (Simplify)  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To prove Euclid’s Theorem we will need a preliminary result. (Math convention uses the word 
“lemma” for  preliminary results that are proved in preparation for the proof of the main 
theorem. 

Lemma: If g | a and  g | b   
               then g | (pa + b) for all integers p. 

Proof: Since  g | a and g | b we can write  

( 1 ) a = pag and b  = pbg.  

Replacing the values of a and b in  g | (pa + b)  
using equations ( 1 ) we get: 

                    g | (ppag + pbg)  

which simplifies to: 

  g | g(ppa + pb) 

Now it should be clear that g divides g(ppa+pb) and thus we conclude that g divides pa + b.      ⧠  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Theorem: Let a,b,q,r be positive integers such that: 
 a = qb + r, 0 ≤ r < b,  then gcd (a,b) = gcd(b,r) 

Strategy of the proof: We show that the gcd(a,b) is a common divisor of b & r and that gcd(b,r) 
is a common divisor of a & b. 

Proof:  
( 0 ) Let g1= gcd(a,b) and g2 = gcd(b,r).  

( 1 ) Observe that g2 | b and g2 | r, so g2 | pb + r for all integers p,  
          and in particular for q, where a = qb + r.  

 ( a ) Therefore, g2 | a, so we have established that g2 is a common divisor of both a and b.  

 ( b) Furthermore, observe that g2  ≤  g1 = gcd(a,b)  

( 2 ) Using the equation a = qb + r we can write r = - qb + a.  
        g1 | b and g1 | a so use the lemma (with p = -q)  to get g1 | -qb + a or g1 | r.  

 ( a ) Therefor g1 | r and we have established that g1 is  a common divisor of b and r.  
   
        ( b ) Furthermore, observe that  g1 ≤  g2 = gcd(b,r) 

( 3 ) g2 ≤ g1 and g1 ≤ g2 implies that g1 = g2, so we can conclude that  gcd(a,b) = gcd(b,r).  ⧠ 
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Euclid’s Algorithm in the Python programming language. 

def euclid_gcd(a,b): 

# Assume a >= b > 0 

    r = a % b # this returns r such that a = bq + r 

    while r > 0: 

        a,b = b,r  

        r = a % b # this returns r s.t. a = bq + r  

    return b 

NOTE: The % (mod) operator is found in many programming languages and returns the 
remainder when doing integer division. 

We will argue that euclid_gcd(a,b) finds gcd(a,b) assuming that a ≥ b > 0.  

We first argue that the loop terminates, that is r eventually becomes 0. This is easy to see because 
the remainder when we divide a by b is less than b. The value of r begins positive and always 
decreases so it eventually must be zero. 

The correctness follows from Euclid’s theorem. 

It can also be shown that this function is extremely efficient when compared to looking at all the 
divisors of a and b.  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Let a = 250, and b = 575. We can construct a prime factorization of a and b. 

Prime factorization: 
250 = (2)(53) 
575 = (52)(23) 

We can inspect the prime factorization of a and b to obtain a greatest common divisor.  

Observe that 52 is the greatest number that divides both a and b, that is the gcd(a,b). Using the 
prime factorizations of a and b is much less efficient than Euclid’s algorithm. 
Nevertheless, the prime factorization is useful for obtaining other properties of the greatest 
common divisor. 
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Least Common Multiple 

Given two non-zero  integers a,b we can have many values that are positive common multiples 1

of both a & b. By the well ordering principle we know that amongst all of those multiples there is 
one that is smallest, and this is known as the least common multiple of a and b. We can define a 
function lcm(a,b) that returns this value. 

Example: Suppose a = 12, and b = 24,  
so we have lcm(a,b) = 24.  
In general if a | b then lcm(a,b) = |b|.  
At this point it is worth mentioning that if a | b then gcd(a,b) = |a|, and that lcm(a,b) × gcd(a,b) = |
ab|. 

Example: Suppose a = 13, and b = 24, we have  
lcm(a,b) = (13)(24).  
In general if a and b are relatively prime, that is, if gcd(a,b) = 1 then lcm(a,b) = |ab| 

So when gcd(a,b) = 1, we can observe that  
lcm(a,b) × gcd(a,b) = |ab|.  

Let a = 250, and b = 575. We can construct a prime factorization of a and b 

Prime factorization 
250 = (2)(53) 
575 = (52)(23) 

We can inspect the prime factorization of a and b to obtain the least common multiple. 

250 × 575 = (2)(53) × (52)(23) = (52) × (2)(53)(23) 

And since gcd(a,b) = 52 we can conclude that  
lcm(a,b) = (2) (53) (23). 

So in this case we also have lcm(a,b) × gcd(a,b) = |ab| 

 Multiples of zero are always zero, so this is a boring case.1
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Let p1, p2, …, pk denote all of the prime factors of both a and b ordered from smallest to largest. 
In our example the list of prime factors would be 2,5,23. 

Let ai denote the exponent of prime factor pi, for  i, 1 ≤ i ≤ k, in a prime factorization of a. 
In our example a1 = 1, a2 = 3, a3 = 0. 
Similarly we define bi for i 1 ≤ i ≤ k.  
In our example b1 = 0, b2 = 2, b3 = 1. 
Again referring to our example we have: 

gcd(a,b) = 2min(1,0) × 5min(3,2) × 23min(0,1) 

and,  

lcm(a,b) = 2max(1,0) × 5max(3,2) × 23max(0,1). 

In general using pi, ai, and bi as defined above we can express this formula as 

and 

One more example

630 = ( 2 ) (32) ( 5 ) ( 7 ) 
84  =  (22) ( 3 ) ( 7 ) 

By inspection we can see that  
gcd(630,84) = ( 2 ) ( 3 ) ( 7 ) = 42 
And lcm(630,84)  =  (22) (32) ( 5 ) ( 7 ) = 1260  
Again we have  

 630 × 84  = ( 2 ) (32) ( 5 ) ( 7 ) × (22) ( 3 ) ( 7 )  
                 = ( 2 ) ( 3 ) ( 7 ) × (22) (32) ( 5 ) ( 7 ) 
                 = gcd(630,84) × lcm(630,84) 

These ideas lead to the following theorem that is given without proof. 

Theorem: Let a,b be non-zero integers, then  

                        gcd(a,b)lcm(a,b) = |ab|.  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gcd(a, b) = pmin(a1,b1)
1 ⇥ pmin(a2,b2)

2 ⇥ · · ·⇥ pmin(ak,bk)
k

lcm(a, b) = pmax(a1,b1)
1

⇥ pmax(a2,b2)
2

⇥ · · ·⇥ pmax(ak,bk)
k
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Factoring vs. GCD  

Factoring an integer N into its prime factors will use  roughly  operations. 

Computing gcd(N,m) with Euclid’s algorithm for  

N > m ≥ 0 will use roughly !  operations. 

The efficiency of Euclid’s gcd algorithm is essential for implementing current public key crypto 
systems that are commonly used for e-commerce applications.  

With a “key” decoding an encrypted message using Euclid’s algorithm takes about 1000 
operations. Without a “key” breaking an encrypted messaged takes about  
operations. This amounts to a small fraction of a second for decoding and many millions of years 
for breaking the encrypted message.  

p
N

log2 N

1024 10 32

1099511627776 40 1,048,576

1000

N

3.27⇥ 10150

p
N

1⇥ 10301

log2 N

3.27⇥ 10150
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Congruence Relations 

 We say that a is congruent to b modulo m written as: 

a ≣ b (mod m)  

and defined as follows: 

a ≣ b (mod m) if  m | (a-b). 

For example: 64 ≣ 4 (mod 2) and we can verify that 2 | 60.  2

Example: Let m = 12. Then we have: 

13 ≣ 1 (mod 12) 

17 ≣ 5 (mod 12) 

Which is familiar to everyone who uses a 24 hour clock. 

And we can also have: 

241 ≣ 1 (mod 12) 

166 ≣ 10 (mod 12) 

120 ≣ 0 (mod 12) 

Similarly  

90 ≣ 30 (mod 60) 

75 ≣ 15 (mod 60) 

120 ≣ 0 (mod 60) 

 Observe that 2 | -60 too.2
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We now show that congruence is an equivalence relation. 

Theorem: Let m be a positive integer then 

1. For any integer a we have a ≣ a (mod m) (reflexive) 
2. if a ≣ b (mod m) then b ≣ a (mod m) (symmetric) 
3. if a ≣ b (mod m) and b ≣ c (mod m)  

then a ≣ c (mod m) (transitive) 

I will prove 3. 
Congruence is an equivalence relation. 

Proof: 
If a ≣ b (mod m) then m | (a-b), (by definition) 
and if b ≣ c (mod m) then m | (b-c). 
And by one of the divisibility theorems we have: 

m | (a-b+b-c) or, m | (a-c) so a ≣ c (mod m). ◻
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