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CISC-102 
Winter 2017 

Week 7 

We will see two different, yet similar, proofs that there are 
infinitely many prime numbers. One proof would surely 
suffice. However, seeing two different ways of proving 
the same result is instructive, as it demonstrates that there 
are often many ways in which to make a mathematical 
argument. I prefer the first proof, but that’s simply a 
matter of taste. Which proof do you prefer?.  

Theorem: There exists a prime greater than n for all 
positive integers n. (We could also say that there are 
infinitely many primes.)  

Proof: (Given any value n we construct a larger value that 
is either prime or has a prime factor greater than n.) 

Consider  
y = n! and x = n! + 1.  

Let p be a prime divisor of x, such that p ≤ n. This implies 
that p is also a divisor of y, because n! is the product of all 
natural numbers from 1 to n. So we have  

p | x and p | y.  
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According to one of the divisibility theorems we have  

p | x - y.  

But x - y = 1 and the only divisor of 1 is -1, or 1, both not 
prime. So there are no prime divisors of x less than n. And 
since every integer is either prime or a product of primes, 
we either have x > n is prime, or there exists a prime p, p 
> n in the prime factorization of x. ◻ 
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Theorem: There is no largest prime. 

Proof: (Proof by contradiction.) 

Suppose there is a largest prime. So we can write down all 
of the finitely many primes as: ! , such that 
!  is largest.  

Now let n =  ! . 

Observe that n must be larger than ! . Therefore n is 
composite and is a product of primes. Let  !  denote a 
prime factor of n. Thus we have  

pk ∣ n  

And since pk ∈  we also have  

pk ∣ (n-1) 

We know that pk ∣ n and pk ∣ (n-1) implies that pk ∣ n - (n-1) 
or pk ∣ 1. But no positive integer divides 1 except 1, and 1 
is not prime, so pk ∣ 1 is impossible, and raises a 
mathematical contradiction. This implies that our 
assumption that !  is the largest prime is false, and so we 
conclude that there is no largest prime. ◻ 

{p1, p2, …, pω}
pω

p1 × p2 × ⋯ × pω + 1

pω
pk

{p1, p2, …, pω}

pω

�3



Week 7 page !  of !4 14

Least Common Multiple  

Let a = 250, and b = 575. We can construct a prime 
factorization of a and b. 

Prime factorization: 
250 = (2)(53) 
575 = (52)(23) 

We can inspect the prime factorization of a and b to obtain 
a greatest common divisor.  

Observe that 52 is the greatest number that divides both a 
and b, that is the gcd(a,b). Using the prime factorizations 
of a and b is much less efficient than Euclid’s algorithm. 
Nevertheless, the prime factorization is useful for 
obtaining other properties of the greatest common divisor. 
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Least Common Multiple 

Given two non-zero integers a,b we can have many values 
that are positive common multiples of both a & b. By the 
well ordering principle we know that amongst all of those 
multiples there is one that is smallest, and this is known as 
the least common multiple of a and b. We can define a 
function lcm(a,b) that returns this value. 

Example: Suppose a = 12, and b = 24,  
so we have lcm(a,b) = 24.  
In general if a | b then lcm(a,b) = |b|.  
At this point it is worth mentioning that if a | b then 
gcd(a,b) = |a|, and that lcm(a,b) × gcd(a,b) = |ab|. 

Example: Suppose a = 13, and b = 24, we have  
lcm(a,b) = (13)(24).  
In general if a and b are relatively prime, that is, if 
gcd(a,b) = 1 then lcm(a,b) = |ab| 

So when gcd(a,b) = 1, we can observe that  
lcm(a,b) × gcd(a,b) = |ab|.  
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Let a = 250, and b = 575. We can construct a prime 
factorization of a and b 

Prime factorization 
250 = (2)(53) 
575 = (52)(23) 

We can inspect the prime factorization of a and b to obtain 
the least common multiple. 

250 × 575 = (2)(53) × (52)(23) = (52) × (2)(53)(23) 

And since gcd(a,b) = 52 we can conclude that  
lcm(a,b) = (2) (53) (23). 

So in this case we also have: 

 lcm(a,b) × gcd(a,b) = |ab| 
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Let p1, p2, …, pk denote all of the prime factors of both a 
and b ordered from smallest to largest. In our example the 
list of prime factors would be 2,5,23. 

Let ai denote the exponent of prime factor pi,  
for  i, 1 ≤ i ≤ k, in a prime factorization of a. 

In our example a1 = 1, a2 = 3, a3 = 0. 
Similarly we define bi for i, 1 ≤ i ≤ k.  
In our example b1 = 0, b2 = 2, b3 = 1. 
Again referring to our example we have: 

gcd(a,b) = 2min(1,0) × 5min(3,2) × 23min(0,1) 

and,  

lcm(a,b) = 2max(1,0) × 5max(3,2) × 23max(0,1). 

In general using pi, ai, and bi as defined above we can 
express this formula as 

and 

�7

gcd(a, b) = pmin(a1,b1)
1 ⇥ pmin(a2,b2)

2 ⇥ · · ·⇥ pmin(ak,bk)
k

lcm(a, b) = pmax(a1,b1)
1

⇥ pmax(a2,b2)
2

⇥ · · ·⇥ pmax(ak,bk)
k
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One more example 

630 = ( 2 ) (32) ( 5 ) ( 7 ) 
84  =  (22) ( 3 ) ( 7 ) 

By inspection we can see that  
gcd(630,84) = ( 2 ) ( 3 ) ( 7 ) = 42 
And lcm(630,84)  =  (22) (32) ( 5 ) ( 7 ) = 1260  
Again we have  

 630 × 84  = ( 2 ) (32) ( 5 ) ( 7 ) × (22) ( 3 ) ( 7 )  
                 = ( 2 ) ( 3 ) ( 7 ) × (22) (32) ( 5 ) ( 7 ) 
                 = gcd(630,84) × lcm(630,84) 

These ideas lead to the following theorem that is given 
without proof. 

Theorem: Let a,b be non-zero integers, then  

                        gcd(a,b) × lcm(a,b) = |ab|.  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Factoring vs. GCD  

Factoring an integer N into its prime factors will use  
roughly  !   operations. 

Computing gcd(N,m) with Euclid’s algorithm for  
N > m ≥ 0 will use roughly  log2 N   operations. 

The efficiency of Euclid’s gcd algorithm is essential for 
implementing current public key crypto systems that are 
commonly used for e-commerce applications.  

With a “key” decoding an encrypted message using 
Euclid’s algorithm takes about 1000 operations. Without a 
“key” breaking an encrypted messaged uses 
approximately 3.27 × 10150  operations. This amounts to a 
small fraction of a second for decoding and many millions 
of years for breaking the encrypted message. 

p
N

1024 10 32

1099511627776 40 1,048,576

1000

N

3.27⇥ 10150

p
N

1⇥ 10301

log2 N
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Congruence Relations 

Let a and b be integers. We say that a is congruent to b 
modulo m written as: 

a ≣ b (mod m)  

and defined as follows: 

a ≣ b (mod m) if and only if  m | (a-b).  

�10



Week 7 page !  of !11 14

Arithmetic with congruences 

Suppose we have a ≣ b (mod m) and c ≣ d (mod m). 

Then  

a + c ≣ (b + d) (mod m), 

a - c ≣ (b - d) (mod m), and 

ac ≣ (bd) (mod m). 

Examples 

5 ≣ 2 (mod 3) and 10 ≣ 1 (mod 3) 

5 + 10 ≣ (2 + 1) (mod 3), that is,  15  ≣ 3 (mod 3)  

5 - 10 ≣ (2 - 1) (mod 3), that is, -5  ≣ 1 (mod 3)  

(Note: By the Division Algorithm Theorem we have -5 = (-2)(3) + 1 )  

(5)(10) ≣ (2)(1) (mod 3), that is, 50 ≣ 2 (mod 3) 

These properties require a proof.  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Suppose we have a ≣ b (mod m) and c ≣ d (mod m). 
Then  a + c ≣ (b + d) (mod m). 

Proof: (We need to show that a + c ≣ (b + d) (mod m).) 

If a ≣ b (mod m) then m | (a-b). 
And  if c ≣ d (mod m) we have m | (c-d).  

This in turn implies that  
m | ((a - b) + (c - d))  

which can be written as  
m | ((a + c ) - (b + d)).  

So we can conclude that a + c ≣ (b + d) (mod m). ◻ 
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Suppose we have a ≣ b (mod m) and c ≣ d (mod m). 
Then  ac ≣ (bd) (mod m).  ◻ 

Proof: (We need to show that m | (ac - bd).) 

If a ≣ b (mod m) then m | (a-b). 
And  if c ≣ d (mod m) we have m | (c-d).  

This in turn implies that  
m | (a - b)c  (because m | (a - b)p for all integers p) 

and that  
m | (c - d)b (because m | (a - b)p for all integers p).  

Therefore we have  
m | ((a - b)c + (c - d)b) 

Which can be written as:  
m | (ac - bd) 

So we can conclude that ac ≣ (bd) (mod m). ◻  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Congruence modulo m is an equivalence relation. 
Observe that we can partition the integers by their 
congruences.  

Examples: 

Congruence (mod 2) partitions integers into those that are 
even and odd. 

Congruence (mod 3) partitions integers into three classes 
those that are divisible by 3 (remainder 0) and those with 
remainder 1, and remainder 2 when divided by 3. 

In general we say that congruence modulo m partitions 
the integers into m classes called residue classes modulo 
m. Furthermore, each of these residue classes can be 
denoted by an integer x within the class using the notation 
[x]m. Using set notation we can express this as follows: 

[x]m = {a ∈ ℤ : a ≣ x mod m} 

And each of the residue classes can be denoted by its 
smallest member as follows: 

[0]m, [1]m, [2]m, …, [m-1]m
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