CISC-102

HOMEWORK 3

READINGS

Read sections 1.8 of Schaum's Outline of Discrete Mathematics. Read section 2.1 of Discrete Mathematics Elementary and Beyond.

PROBLEMS

(1) Mathematical induction can be used to prove that the sum of the first n natural numbers is equal to $\frac{n(n+1)}{2}$. This can also be stated as: We can prove that the proposition P(n),

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

is true for all $n \in \mathbb{N}$, by using mathematical induction.

I wrote out the proof, but somehow it got all scrambled as shown below. Rearrange the lines to get the correct proof.

1. Induction step: The goal is to show that P(k+1) is true.

2. Base: for $n = 1, 1 = \frac{1(1+1)}{2}$

3.
$$= \frac{(k+1)(k+2)}{2}$$

4. $\sum_{i=1}^{k+1} i = \sum_{i=1}^{k} i + (k+1)$
5. $= \frac{k^2 + k + 2k + 2}{2}$

6. Induction hypothesis: Assume that P(k), for Natural numbers $k \ge 1$ is true, that is:

1

7.
$$=\frac{k^2+3k+2}{2}$$

8. $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$
9. $=\frac{k(k+1)}{2} + (k+1)$

HOMEWORK 3

(2) Prove using mathematical induction that the proposition P(n),

$$\sum_{i=2}^{n} i = \frac{(n-1)(n+2)}{2}$$

is true for all $n \in \mathbb{N}, n \geq 2$.

(3) Prove using mathematical induction that the proposition P(n),

$$\sum_{i=3}^{n} i = \frac{(n-2)(n+3)}{2}$$

is true for all $n \in \mathbb{N}, n \geq 3$.

(4) Prove using mathematical induction that the proposition P(n)

$$n! \leq n^n$$

is true for all $n \in \mathbb{N}$.

(5) Given a set of n points on a two dimensional plane, such that no three points are on the same line, it is always possible to connect every pair of points with a line segment. The figure illustrates this showing 5 points, that are pairwise connected with 10 line segments. Prove using mathematical induction that the total number of line segments is $\frac{n(n-1)}{2}$ for any number of points $n \in \mathbb{N}, n \geq 2$.

FIGURE 1. Five points, pairwise connected with 10 line segments.

CISC-102

(6) Consider the following proof that n + 1 = n, for all natural numbers n. **Induction Hypothesis:** Assume that k + 1 = k for a fixed natural number k. **Induction step:**

$$k + 2 = \frac{k}{k} + 1 + 1$$

= $k + 1$ (apply induction hypothesis)
= $k + 1$

We have shown that P(k) true implies that P(k+1) is true so by the principle of mathematical induction we conclude that P(n) is true for all $n \in \mathbb{N}$. \Box This each the right whether whether P(n)

This can't possibly be right! What's wrong?