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CISC-102

When we expand the expression:
(x +y)’

we get:
(xty)(xty)(xty) = x3 + 3x2y + 3xy2 + y?3

this can also be written as follows:
. 3 3 3 2 3 2 3 3
(z+y)(z+y)(z+y) = (O)x + (1):13 y+ (2)xy + <3>y

We can reason that when we expand (x + y)3, there is one
way to choose a triple that is exclusively x’s (with 0 y’s),
3 ways to choose a triple that has 2 x’s (and 1 y) , and 3
ways to choose a triple that has 1 x (and 2 y’s). Finally
there 1s 1 way to choose a triple with no x (and 3 y’s).



Binomial Theorem:

(x4+y)" = (g) :I:nyo + (’rlL) "y + <Z) "2 4 <

_ kz:;) (Z) xn—kzyk

For all natural numbers 7.

Proof: In the expansion of the product:

(x+y) x+y) - (xty),
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there (n) ways to choose an n-tuple with n-k x’s and (k

k
Y’s). o



page 3 of 48

A special case of the binomial theorem should look

familiar.
n n n n
1n10 1n—11 171—212 . 10177,
(o) () (et

-3 (1

This is just the sum the sizes of
all subsets of a set of size n.

(1+1)"
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Using counting to prove theorems.

Counting arguments can be useful tool for proving
theorems. In each case there 1s also an algebraic way of
proving the result. However, there is an inherent beauty in
the elegant simplicity of some of these counting
arguments so it’s well worth looking at some examples.
These proofs lack the formality of algebraic proofs. The
lack of formality may make these arguments harder to
grasp for some, and easier to understand for others.

The proofs we see will be to prove the validity of
equations. We will count the left and right hand side of
each equation and show that they count the same thing,.
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Binomial Coefficients

We prove 1dentities involving binomial coefficients using
counting arguments.

Theorem:

Proof: On the left we have the quantity (Z) which
represents the number of ways to select a £ element subset
from an n element set, S. Using the analogy of selecting
balls from a bag, we see that we also implicitly select the
complementary subset that stays in the bag, and the
number of ways to do this 1s as given on the right hand

n
side of the equation is (" 5) . O
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Theorem A:
n+1 n n
= +
() =0+ (5)

n+1
Proof: On the left the quantity ( ‘ > represents the

number of ways to select a k element subset from an n+1
element set. To see what the right hand side counts we
suppose that there is a “favourite” or “distinguished”
element of the set, call it x.

The number of ways to select a k element subset from
n+1 distinct objects that 1s guaranteed to include x 1s to
pull x out and then choose the remaining k-7 elements in

n
< >ways. On the other hand the number of ways to

select a k element subset from n+/ distinct objects that is
guaranteed to exclude x is to pull x out and then choose all

n
k elements in < k) ways.

Therefore the left and right hand side both count the same
thing thus justifying the equation. [
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And here’s an alternate algebraic proof.

() () - ()

Proof:

(kﬁl) i (Z) == k+77i!)!(k —1n <n_7;!>!<k>!
nlk+nl(n—k + 1)

(n+1—k)k!
nl(k+n—k+1)
(n+1—k)k!
nl(n+1)
(n+1—k)k!
(n+1)!
(n+1—k)k!

1)
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Theorem:
()= () ()= () -

Proof: On the left the sum counts all the subsets of a set
of size n. We already know that the number of subsets of a

set of size n, 1s 2.

Therefore the left and right hand side both count the same
thing thus justifying the equation. OJ
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Pascal’s Triangle

An easy way to calculate a table of binomial coefficients
was recognized centuries ago by mathematicians in India,
China, Iran and Europe.

In the west the technique is named after the French
mathematician Blaise Pascal (1623-1662). In the example
below each row represents the binomial coefficients as
used in the binomial theorem.
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To obtain the entries by hand in a simple way we can use
the 1dentity:

(i) = G2 + (")

NG
NGBRGD
NGNS
OO 06
GG R IO IO
R G R R
DO OO 0 0 e
1
1 1
1 2 1

10
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Consider the sum of elements in a row of Pascal’s
triangle. If we label the top row 0, then 1t appears that row
1 sums to the value 2i. Can you explain why this 1s the
case?

NG
NGBRG
NEBRGNC
RO N
NG ORI
B G G R R
DO OO O 0 e
1
1 1
1 2 1

11
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Now let’s compute the sum of squares of the entries of
each row in Pascal’s triangle.

12=1

12+ 12=2
12+22+12=6
12+32+324+12=20
12+424+62+42+12=70

These sums all appear in the middle row of Pascal’s
triangle.

Which leads us to conjecture that:

(1) - (%)

12



page 13 of 48

Before proving the theorem there are two preliminary
lemmas.

Lemma 1:

(M) = ()

For all non-negative integers n,k, n > k.

Proof: Since we already showed that () = ( " ) this

should be obvious. O

13
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()= (7

1

Lemma 2:
For all non-negative integers m,n,k such that n >m > k.

Proof: We use a counting argument. The right hand side
can be viewed as the number of subsets of size £ chosen
from the union of two disjoint sets, S of size m, and T of
size n. On the left we sum the choices where all & are
from S, then £~/ from S and 1 from 7 and so on up to all £
chosen from set 7. O

For example: Suppose

S'={a,b} with |S|=m =2, and
T'={c,d,e} with|T|=rn=3 and

k= 2. So the sum on the right would be:

(L2 )O-00 000

14
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Theorem:

i (n>2 B <2n)
Z ) \n
12=0
for all natural numbers n > 1.

Proof: Using lemma 1 we can write (7)2 =(")(," )

7 n—1

Now we observe that the sum 1s just a special case of
lemma 2, where m = n, and k£ = n, as follows:

() ()= (10)

(2

15
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Logic and Propositional Calculus (SN Chapter 4.)

Propositional logic was eventually refined using symbolic
logic. The 17th/18th century philosopher Gottfried
Leibniz (an inventor of calculus) has been credited with
being the founder of symbolic logic. Although his work
was the first of its kind, 1t was unknown to the larger
logical community. Consequently, many of the advances
achieved by Leibniz were re-achieved by logicians like
George Boole and Augustus De Morgan in the 19th
century completely independent of Leibniz.

16
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A proposition 1s a statement that 1s either true or false.
For example:

The earth 1s flat.

A tomato i1s a fruit.

The answer to the ultimate question of life, the universe,
and everything is 42.1

' Quoted from: Douglas Adams, “The Hitchhiker’s Guide to the Galaxy” (1979).

17



Basic operations
Let p and q be logical variables.

Basic operations are defined as:
Conjunction p A q (p and q)
(true 1f both p and q are true, otherwise false)

Disjunctionp v q (p or q)
(true 1f either p or q are true, otherwise false)

Negation —p (not p)
(true 1f p 1s false (not true), otherwise false)

18
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Truth tables
We can enumerate the values of logical expressions using
a truth table.

For example:

p q -q PAq pvq
T T F T T
T F T F T
F T F F T
F F T F F

19
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Notation
We can denote a logical expression constructed from
logical variables p,q, and logical operators A,v, and —

(and, or, not) using the notation P(p,q).

We call this type of expression a logical proposition.

For example: —(p v q) ( not (p or q)) is a logical
proposition that depends on the values of p and q. We can
use truth tables to determine truth values of a logical
proposition.

vy |[~(PVva

F

M| M| 4|
MmlH4(m|4]|Q
(4|44

F
F
T

20
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Definitions

A tautology 1s a logical expression that 1s always true for
all values of its variables.

A contradiction 1s a logical expression that is always false
(never true) for all values of its variables

q q qv-'q qr—'q
T F T F
T T F

Whether q is true or false, q vV —q 1s always true,
and g A —q 1s always false.

21
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Logical Equivalence

Two propositions (using the same variables)

P(p,q) Q(p,q) are said to be logically equivalent or
equivalent or equal if they have identical truth table
values.

We notate equivalence:

P(p,q) = Q(p,q)

22
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There are a set of “laws” of logic that are very similar to
the laws of set theory.

The laws of logic can be proved by using truth tables.

23
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b ANnd— = (bv d)—(q01)

b v d— = (bAd)—(eQ])

:Smej S, ue3I0AP_(

L= A4-(96) d = I— (®6) sy Juomoydio))
I =d—vd(g) L =d—nd(eg)
d=d——(}) :Me[ uonnoAuf
d=.4Vd(Qg) L= INd(e9) N —
d= Jvd(qQ) d = Nd(eQ) .

(uvdyn((bvd)=(AD)vd(qp)

(Und)v (bAd)=(1vb)Ad (ep)

ISME[ ANNQLYSI(]

dv b=D>bvd(qg)

dAb=DbAd(eg)

ISME[ 9ATJBINUIWO))

(4vbyvd=.av(bvd)(qy)

UADYANd =un(DAd) (6]

ISME[ JAIIBIIOSS Y

d=dvd(@Qr)

d=dnd(e])

:smef Judjoduwdpy

suonisodoad Jo viqag[e ay) Jo sme| - dqel,
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We prove DeMorgan’s law with truth tables

p q ~(pvq)
T T F
T F F
F T F
F F T
-p —q “pATq
F F F
F T F
T F F
T T T

25
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We prove the distributive law with truth tables

p q r pv(qAr)
T T T T

T T F T

T F T T

T F F T

F T T T

F T F F

F F T F

F F F F

p q r (pvq) A(pvr)
T T T T
T T F T
T F T T
T F F T
F T T T
F T F F
F F T F
F F F F

26
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Conditional Statements

A typical statement in mathematics is of the form
“if p then q”.

For example:

In all of these examples variables are assumed to be
natural numbers.

if then
if ,thena <7
if 2 | athen 2 | (a)(b)

All of these statements are true if a and b are natural
numbers.

In logic we use the symbol — to model this type of
statement. However, using the symbol — 1n logic does
not necessarily have a causal relationship between p and

g.

“if p then q” 1s denoted p — q, and pronounced either
“if p then q” or “p implies q”.

27
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A truth table is used to define the outcomes when using
the — logical operator.

p q pP—q
T T T
T F F
F T T
F F T

This definition does not appear to make much sense,
however, this 1s how implication is defined in logic.

if sugar is sweet then lemons are sour.

Is a true implication.
if sugar is sweet then the earth is flat.

Is a false implication.
if the earth 1s flat then sugar 1s sweet.

Is a true implication.
if the earth 1s flat then sugar 1s bitter.

Is a true implication

28
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The truth table for implications can be summarized as:

1. An implication is true when the “if” part is false, or the

“then” part is true.

2. An implication 1s false only when the “if” part 1s true,
and the “then” part is false.

Note thatp - q=—p v q.

We can verify this with a truth table

P q PVq
T T
T F
F T
F F

29
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Biconditional Implications

A shorthand for the pair of statements
eifa<band b<athena=b
ifa=bthena<bandb=<a
;S;bifand onlyifa<bandb<a

This can be notated as
a=b<=(a<b)a(b<a)

An often used abbreviation for “if and only 1f” 1s “iff”.

30
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A truth table for the biconditional implication is:

p<q

min|4(4|O

q
T
F
-
E

-
-
F
-

The truth table for biconditional implications can be
summarized as:

1. A biconditional implication is true when both p and q
are true, or both p and q are false.

Note that:

p<—q=(@—q9A(Q—Dp)
as well as:

pq=(CpvaA(qVp).

31
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The following truth table verifies the logical equivalence

peq=(CpvqA(qVDp)

p<q 7pvq —qvp (Cpv g A(qVDp)

32

m nn 4 4o

q
T
F
T
E

T

F
F
T

T

F
T
T

T

T
F
T

T

F
F
T
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Suppose we have the proposition

P—q

the contrapositive:

~q—"p?

is logically equivalent as verified by the following truth
table.

Y q P q Q=P

n|m| =
n|A|m|
A=A |m|m
—H|m| 4|
A |47+

The following example may help in understanding the
contrapositive.

if 2 | a then 2 | (a)(b) 1s logically equivalent to
if 2 t(a)(b) then 2 | a.

33
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Suppose we have the proposition

pP—q

the converse:

q—p?

is not logically equivalent as verified by the following
truth table.

p q q—P |P—1q
T T T T
T F T F
F T F T
F F T T

The following example may help in understanding why
the converse is not logically equivalent to the implication.

if 2 | a then 2 | (a)(b) 1s not logically equivalent to
if 2 1 (a)(b) then 2 | a.

34
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It should be obvious that an implication and its converse
results 1n a biconditional implication.

that 1s:

p < q s logically equivalent to
P—qAr@—p

or p«>q=(p—9) A (q—p)
Logical Consequence and Arguments

Consider the expression:

p 1s true and p implies q is true , as a consequence we can
deduce that q must be true.

This is a logical argument, and can be written
symbolically as,

p.p—qk(q

where: p, p — q 1s called a sequence of premises, and q 1s
called the conclusion.
The symbol  denotes a logical consequence.

A sequence of premises whose logical consequence leads
to a conclusion 1s called an argument.

35
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Valid Argument

We can now formally define what is meant by a valid
argument.

The argument Py, P2, P3, ..., Po = Q is valid if and
only if P1 A P2 A P3 A ... A Pn— Q is a tautology.

Example: Consider the argument

p—q¢q—2>rLEp—or
We can see if this argument is valid by using truth tables
to show that the proposition:
P—=aAr(@—1)—=p—1)
a tautology, that 1s, the proposition is true for all T/F
values of p,q.r.

36
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P—=DA(@—0)|(P—1)|[(p— g A

r

q

37
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Consider the following argument:

If two sides of a triangle are equal then
the opposite angles are equal
T 1s a triangle with two sides that are not equal

The opposite angles of T are not equal

(With this notation the horizontal line separates a
sequence of propositions from a conclusion.)

38
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Let p be the proposition
“two sides of a triangle are equal”
and let q be the proposition
“the opposite angles are equal”

We can re-write the argument in symbols as:
pP—q " PFETq
and as the expression:

[(p—a) APpl—q

We can check whether this 1s a valid argument by using a
truth table to determine whether the expression is a
tautology.

39
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[(P— @) A p]l—>q

B e I s T e I e

ST IS I I ST IS

40
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Let’s look at another logical argument that can be
expressed as:

[(P— D AP]l—q

If 21 athen 2| ab
2ta

2+ ab

(With this notation the horizontal line separates a
sequence of propositions from a conclusion.)

Here we have

p the proposition: 2 | a
q the proposition: 2| ab

I can show that the argument is invalid with an example:

Leta=3andb=2.Clearly, 2 ta and 2 | ab

41
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In the geometry argument we can’t find a counter
example. The reasoning is flawed, but we can obtain a
correct version of the argument by noticing that:

If two sides of a triangle are equal then
the opposite angles are equal

Is a valid geometric fact. We also have the fact that:

If two angles of a triangle are equal then
the opposite sides are equal

(NOTE: 1f 2 | ab then 2 |a 1s not necessarily true)
The following is a valid argument.
If two angles of a triangle are equal then

then opposite sides are equal
T 1s a triangle with two sides that are not equal

The opposite angles of T are not equal

That 1s:

[((p — q) A ~q ]— —p 1s a valid argument and can be
verified to be a tautology using truth tables

42
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P q P> @P=>DAr~q([p>PAr—q]>"Pp
T|T T
T |F F F T
F | T T F T
F | F T T T

43
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Propositional Functions

Let P(x) be a propositional function that is either true or
false for each x in A.

That is, the domain of P(x) 1s a set A, and the range is
{true, false}. NOTE: Sometimes propositional function
are called predicates.

Observe that the set A can be partitioned into two subsets:

« Elements with an image that is true.
« Elements with an image that is false.

In particular we may define the truth set of P(x) as:
Te={x:x1mnA, P(x) 1s true}

Examples: Consider the following propositional
functions defined on the positive integers.

PxX):x+2>7;Tp={x:x>35}
P(x):x+5<3;Tp=0
PxX):x+5>1;Tp=N

44
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Quantifiers
There are two widely used logical quantifiers

Definition:
Universal Quantifier: V (for all)

Let P(x) be a propositional function. A quantified

proposition using the propositional function can be stated
as:

(Vx € A) P(x) (for all x in A P(x) is true)
Tp={xx€A,PX)} =A

Or if the elements of A can be enumerated as:
A= {x1, X2, X3, ...}

We would have:

P(x1) A P(x2) A P(X3) A ... 1S true.

45
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Definition:
Existential Quantifier: d(there exists)

Let P(x) be a propositional function. A quantified
proposition using the propositional function can be stated
as:

(dx € A) P(x) ( There exists an x in A s.z. P(X) 1s true)
Tr={xxEAPX)}#D

Or if the elements of A can be enumerated as:

A= {x1, X2, X3, ...}

We would have:

P(x1) v P(x2) v P(x3) v ... 1s true.

46



Quantifiers
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Statement True when: False when:
(Vx €EA)P(x)  P(x)is true for P(x) is false for
every X € A. one or more
X EA.
(Ax € A) P(x) P(x) is true for P(x) is false for
one or more every X € A.

47
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Propositional functions with more than one variable
Consider the following illustrative example:

Let p(x,y) be the proposition that “x+y = 10” where the
ordered pair (x,y) € {1, 2, ..., 9} x {1, 2, ..., 9}.

Consider the following quantified statements:

1. Vx3dy p(x.y)
2. dy Vx p(x,y)

1. Says: “for every x there exists a 'y such that x +y=10”
2. Says: “there exists a y such that for every x, x+y = 10"

Statement 1. is true, and statement 2, is false by

inspection. This simply illustrates that the concepts that
we have seen can be extended to more that one variable.
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