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CISC-102 
Fall 2019 
Week 10 

When we expand the expression: 
 (x + y)3  

we get: 
(x+y)(x+y)(x+y) = x3 + 3x2y + 3xy2 + y3 

this can also be written as follows: 

 

We can reason that when we expand (x + y)3, there is one 
way to choose a triple that is exclusively x’s (with 0 y’s), 
3 ways to choose a triple that has 2 x’s (and 1 y) , and 3 
ways to choose a triple that has 1 x (and 2 y’s). Finally 
there is 1 way to choose a triple with no x (and 3 y’s).  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Binomial Theorem: 

 
For all natural numbers n. 

Proof: In the expansion of the product: 

(x + y) (x + y) ... (x+y), 

there  ways to choose an n-tuple with n-k x’s and (k 
y’s).  ⧠  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A special case of the binomial theorem should look 
familiar. 

This is just the sum the sizes of  
all subsets of  a set of size n. 
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Using counting to prove theorems. 

Counting arguments can be useful tool for proving 
theorems. In each case there is also an algebraic way of 
proving the result. However, there is an inherent beauty in 
the elegant simplicity of some of these counting 
arguments so it’s well worth looking at some examples. 
These proofs lack the formality of algebraic proofs. The 
lack of formality may make these arguments harder to 
grasp for some, and easier to understand for others.  

The proofs we see will be to prove the validity of 
equations. We will count the left and right hand side of 
each equation and show that they count the same thing. 

4
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Binomial Coefficients 

We prove identities involving binomial coefficients using 
counting arguments. 

Theorem: 

 

Proof: On the left we have the quantity  which 
represents the number of ways to select a k element subset 
from an n element set, S. Using the analogy of selecting 
balls from a bag, we see that we also implicitly select the 
complementary subset that stays in the bag, and the 
number of ways to do this is as given on the right hand 
side of the equation is   .    ⧠ 
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Theorem A: 

 

Proof: On the left the quantity  represents the 

number of ways to select a k element subset from an n+1 
element set. To see what the right hand side counts we 
suppose that there is a “favourite” or “distinguished” 
element of the set, call it x.  
The number of ways to  select a k element subset from 
n+1 distinct objects that is guaranteed to include x is to 
pull x out and then choose the remaining k-1 elements in 

ways. On the other hand the number of ways to  

select a k element subset from n+1 distinct objects that is 
guaranteed to exclude x is to pull x out and then choose all 

k elements in ways.   

Therefore the left and right hand side both count the same 
thing thus justifying the equation. ⧠  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And here’s an alternate algebraic proof.  
 

Proof: 
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Theorem:  

Proof: On the left the sum counts all the subsets of a set 

of size n. We already know that the number of subsets of a  

set of size n, is 2n.   
Therefore the left and right hand side both count the same 
thing thus justifying the equation. ⧠  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Pascal’s Triangle  

 An easy way to calculate a table of binomial coefficients 
was recognized centuries ago by mathematicians in India, 
China, Iran and Europe.  
In the west the technique is named after the French 
mathematician Blaise Pascal (1623-1662). In the example 
below each row represents the binomial coefficients as 
used in the binomial theorem.  

 

9
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ing trick, we can reduce the problem of counting such distributions to the
problem we just solved: We borrow 1 penny from each child, and then dis-
tribute the whole amount (i.e., n + k pennies) to the children so that each
child gets at least one penny. This way every child gets back the money we
borrowed from him or her, and the lucky ones get some more. The “more”
is exactly n pennies distributed to k children. We already know that the
number of ways to distribute n+ k pennies to k children so that each child
gets at least one penny is

(n+k−1
k−1

)
. So we have the next result:

Theorem 3.4.2 The number of ways to distribute n identical pennies to
k children is

(n+k−1
k−1

)
.

3.4.1 In how many ways can you distribute n pennies to k children if each child
is supposed to get at least 2?

3.4.2 We distribute n pennies to k boys and ℓ girls in such a way that (to be
really unfair) we require that each of the girls gets at least one penny (but we do
not insist on the same thing for the boys). In how many ways can we do this?

3.4.3 A group of k earls are playing cards. Originally, they each have p pennies.
At the end of the game, they count how much money they have. They do not
borrow from each other, so that each cannot loose more than his p pennies. How
many possible results are there?

3.5 Pascal’s Triangle

To study various properties of binomial coefficients, the following picture is
very useful. We arrange all binomial coefficients into a triangular scheme:
in the “zeroth” row we put

(0
0

)
; in the first row, we put

(1
0

)
and

(1
1

)
; in the

second row,
(2
0

)
,
(2
1

)
, and

(2
2

)
; etc. In general, the nth row contains the num-

bers
(n
0

)
,
(n
1

)
, . . . ,

(n
n

)
. We shift these rows so that their midpoints match;

this way we get a pyramidlike scheme, called Pascal’s Triangle (named af-
ter the French mathematician and philosopher Blaise Pascal, 1623–1662).
The figure below shows only a finite piece of Pascal’s Triangle.
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To obtain the entries by hand in a simple way we can use 
the identity:  

. 
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50 3. Binomial Coefficients and Pascal’s Triangle

We can replace each binomial coefficient by its numerical value to get
another version of Pascal’s Triangle (going a little further down, to the
eighth row):

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

3.5.1 Prove that Pascal’s Triangle is symmetric with respect to the vertical line
through its apex.

3.5.2 Prove that each row of Pascal’s Triangle starts and ends with 1.

3.6 Identities in Pascal’s Triangle

Looking at Pascal’s Triangle, it is not hard to notice its most important
property: Every number in it (other than the 1’s on the boundary) is the
sum of the two numbers immediately above it. This, in fact, is a property of
the binomial coefficients we already met, namely, equation (1.8) in Section
1.8: (

n

k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
. (3.2)

This property of Pascal’s Triangle enables us to generate the triangle
very fast, building it up row by row, using (3.2). It also gives us a tool to
prove many properties of the binomial coefficients, as we shall see.

As a first application, let us give a new solution to exercise 3.1.2. There
the task was to prove the identity
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The figure below shows only a finite piece of Pascal’s Triangle.

(0
0

)
(1
0

) (1
1

)
(2
0

) (2
1

) (2
2

)
(3
0

) (3
1

) (3
2

) (3
3

)
(4
0

) (4
1

) (4
2

) (4
3

) (4
4

)
(5
0

) (5
1

) (5
2

) (5
3

) (5
4

) (5
5

)
(6
0

) (6
1

) (6
2

) (6
3

) (6
4

) (6
5

) (6
6

)



 page  of 11 48

Consider the sum of elements in a row of  Pascal’s 
triangle. If we label the top row 0, then it appears that row 
i sums to the value 2i. Can you explain why this is the 
case? 

 

50 3. Binomial Coefficients and Pascal’s Triangle

We can replace each binomial coefficient by its numerical value to get
another version of Pascal’s Triangle (going a little further down, to the
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Now let’s compute the sum of squares of the entries of 
each row in Pascal’s triangle.  

12 = 1 
12 + 12 = 2 
12 + 22 + 12 = 6 
12 + 32 + 32 +12 = 20 
12 + 42 + 62 + 42 + 12 = 70 

These sums all appear in the middle row of Pascal’s 
triangle.  

 
 Which leads us to conjecture that: 
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Before proving the theorem there are two preliminary 
lemmas. 

Lemma 1: 

 
For all non-negative integers n,k, n > k. 
Proof: Since we already showed that  this 

should be obvious. ⧠ 
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Lemma 2:  
For all non-negative integers m,n,k such that n ≥ m ≥ k. 
Proof: We use a counting argument. The right hand side 
can be viewed as the number of subsets of size k chosen 
from the union of two disjoint sets, S of size m, and T of 
size n. On the left we sum the choices where all k are 
from S, then k-1 from S and 1 from T and so on up to all k 
chosen from set T. ⧠ 

For example: Suppose  
S = {a,b} with |S| = m = 2, and  
T = {c,d,e} with |T| = n = 3   and  
k = 2. So the sum on the right would be: 
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Theorem: 

for all natural numbers n ≥ 1.  

Proof: Using lemma 1 we can write . 

Now we observe that the sum is just a special case of 
lemma 2, where m = n, and k = n, as follows: 

⧠  
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Logic and Propositional Calculus (SN Chapter 4.) 

Propositional logic was eventually refined using symbolic 
logic. The 17th/18th century philosopher Gottfried 
Leibniz (an inventor of calculus) has been credited with 
being the founder of symbolic logic. Although his work 
was the first of its kind, it was unknown to the larger 
logical community. Consequently, many of the advances 
achieved by Leibniz were re-achieved by logicians like 
George Boole and Augustus De Morgan in the 19th 
century completely independent of Leibniz. 

16
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A proposition is a statement that is either true or false. 
For example: 
The earth is flat. 
A tomato is a fruit. 
The answer to the ultimate question of life, the universe, 
and everything is 42.  1

 Quoted from: Douglas Adams, “The Hitchhiker’s Guide to the Galaxy” (1979). 1

17
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Basic operations 

Let p and q be logical variables.  

Basic operations are defined as: 
Conjunction p ∧ q (p and q) 
(true if both p and q are true, otherwise false) 

Disjunction p ∨ q (p or q) 
(true if either p or q are true, otherwise false) 

Negation ¬p (not p) 
(true if p is false (not true), otherwise false)  

18
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Truth tables 
We can enumerate the values of logical expressions using 
a truth table.  

For example: 

 

p q ¬q p∧q p∨q

T T F T T

T F T F T

F T F F T

F F T F F

19
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Notation 
We can denote a logical expression constructed from 
logical variables p,q, and logical operators ∧,∨, and ¬ 
(and, or, not) using the notation P(p,q).  

We call this type of expression a logical proposition. 

For example: ¬(p ∨ q) ( not (p or q)) is a logical 
proposition that depends on the values of p and q. We can 
use truth tables to determine truth values of a logical 
proposition. 

p q (p ∨ q) ¬(p ∨ q)
T T T F

T F T F

F T T F

F F F T

20
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Definitions 
A tautology is a logical expression that is always true for 
all values of its variables.  
A contradiction is a logical expression that is always false 
(never true) for all values of its variables 

 

Whether q is true or false, q ⋁ ¬q is always true,  
and q ⋀ ¬q is always false. 

q ¬q q∨¬q q∧¬q
T F T F

F T T F

21



 page  of 22 48

Logical Equivalence 
Two propositions (using the same variables)  
P(p,q) Q(p,q) are said to be logically equivalent or 
equivalent or equal if they have identical truth table 
values.  
We notate equivalence: 

P(p,q) ≡ Q(p,q) 
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There are a set of “laws” of logic that are very similar to 
the laws of set theory.  

The laws of logic can be proved by using truth tables.  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We prove DeMorgan’s law with truth tables 

  

p q ¬ (p∨q)

T T F

T F F

F T F

F F T

¬ p ¬ q ¬ p ∧ ¬q

F F F

F T F

T F F

T T T
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We prove the distributive law with truth tables 

p q r p∨(q∧r)

T T T T

T T F T

T F T T

T F F T

F T T T

F T F F

F F T F

F F F F

p q r (p∨q) ∧(p∨r)

T T T T

T T F T

T F T T

T F F T

F T T T

F T F F

F F T F

F F F F
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Conditional Statements 

A typical statement in mathematics is of the form  
“if p then q”. 

For example:  

In all of these examples variables are assumed to be 
natural numbers. 

if a ≤ b and b ≤ a then a =b  

if a-7 < 0, then a < 7 

if 2 | a then 2 | (a)(b) 

All of these statements are true if a and b are natural 
numbers. 

In logic we use the symbol → to model this type of 
statement. However, using the symbol → in logic does 
not necessarily have a causal relationship between p and 
q.  

“if p then q” is denoted p → q, and pronounced either  
“if p then q” or “p implies q”. 
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A truth table is used to define the outcomes when using 
the → logical operator. 

This definition does not appear to make much sense, 
however, this is how implication is defined in logic.  

if sugar is sweet then lemons are sour.  
         Is a true implication. 
if sugar is sweet then the earth is flat. 
         Is a false implication. 
if the earth is flat then sugar is sweet.  
         Is a true implication. 
if the earth is flat then sugar is bitter.  
          Is a true implication 

p q p → q
T T T

T F F

F T T

F F T
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The truth table for implications can be summarized as: 

1. An implication is true when the “if” part is false, or the 
“then” part is true.  

2. An implication is false only when the “if” part is true, 
and the “then” part is false.  

Note that p → q ≡ ¬p ∨ q. 

We can verify this with a truth table 
p q ¬p ∨ q
T T

T F

F T

F F
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Biconditional Implications 

A shorthand for the pair of statements  

• if a ≤ b and b ≤ a then a =b  
• if a =b then a ≤ b and b ≤ a 
is: 
a = b if and only if a ≤ b and b ≤ a 

This can be notated as  
a = b ↔ (a ≤ b) ∧ (b ≤ a) 

An often used abbreviation for “if and only if” is “iff”. 
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A truth table for the biconditional implication is: 

The truth table for biconditional implications can be 
summarized as: 

1. A biconditional implication is true when both p and q 
are true, or both p and q are false.  

Note that: 
 p ↔ q ≡ (p →q) ∧ (q → p)  
as well as:  
 p ↔ q ≡ (¬p ∨ q) ∧ (¬q ∨ p). 

p q p ↔ q
T T T

T F F

F T F

F F T
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The following truth table verifies the logical equivalence 
p ↔ q ≡ (¬p ∨ q) ∧ (¬q ∨ p) 

p q p ↔ q ¬p∨q ¬q∨p (¬p ∨ q) ∧ (¬q ∨ p)
T T T T T T

T F F F T F

F T F T F F

F F T T T T
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Suppose we have the proposition  
p → q  
the contrapositive:  
¬q → ¬p ? 
is logically equivalent as verified by the following truth 
table. 

The following example may help in understanding the 
contrapositive. 

if 2 | a then 2 | (a)(b) is logically equivalent to 
if 2 ∤(a)(b) then 2 ∤ a.  

p q ¬p ¬q ¬q → ¬p
T T F F T

T F F T F

F T T F T

F F T T T
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Suppose we have the proposition  
p → q  
the converse:  
q → p ? 
is not logically equivalent as verified by the following 
truth table. 

The following example may help in understanding why  
the converse is not logically equivalent to the implication. 

if 2 | a then 2 | (a)(b) is  not logically equivalent to 
if 2 ∣ (a)(b) then 2 ∣ a.  

p q q → p p → q
T T T T

T F T F

F T F T

F F T T
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It should be obvious that an implication and its converse 
results in a biconditional implication.  

that is: 
p ↔ q is logically equivalent to  
(p → q) ∧ (q → p)  
or  p ↔ q ≡ (p →q) ∧ (q → p). 
Logical Consequence and Arguments 

Consider the expression: 

p is true and p implies q is true , as a consequence we can 
deduce that q must be true.  

This is a logical argument, and can be written 
symbolically as,  

p, p → q ⊢ q  

where: p, p → q is called a sequence of premises, and  q is 
called the conclusion.  
The symbol ⊢ denotes a logical consequence.  

A sequence of premises whose logical consequence leads 
to a conclusion is called an argument. 
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Valid Argument 

We can now formally define what is meant by a valid 
argument.  

The argument P1, P2, P3 , ... , Pn ⊢ Q is valid if and 
only if P1 ∧ P2 ∧ P3 ∧ ... ∧ Pn → Q is a tautology.  

Example: Consider the argument  

p → q, q → r, ⊢ p → r  
We can see if this argument is valid by using truth tables 
to show that the proposition: 

(p → q) ∧ (q → r) → (p → r) 
 a tautology, that is, the proposition is true for all T/F 
values of p,q,r.  
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p q r (p → q) ∧ (q → r) (p → r) [(p → q) ∧ 
(q → r)] 
→ (p → r)

T T T T T T

T T F F F T

T F T F T T

T F F F F T

F T T T T T

F T F F T T

F F T T T T

F F F T T T
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Consider the following argument: 

If two sides of a triangle are equal then  
      the opposite angles are equal  
T is a triangle with two sides that are not equal 
               

The opposite angles of T are not equal 

(With this notation the horizontal line separates a 
sequence of propositions from a conclusion.) 
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Let p be the proposition  
“two sides of a triangle are equal” 

and let q be the proposition  
“the opposite angles are equal” 

We can re-write the argument in symbols as: 

p → q, ¬p ⊢ ¬q 

and as the expression:  
[(p → q) ∧ ¬p ]→ ¬q 

We can check whether this is a valid argument by using a 
truth table to determine whether the expression is a 
tautology.  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p q [(p → q) ∧ ¬p ]→ ¬q

T T

T F

F T

F F
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Let’s look at another logical argument that can be 
expressed as: 

[(p → q) ∧ ¬p ]→ ¬q 

If 2 ∣ a then 2 ∣ ab 
2 ∤ a 
               

2 ∤ ab 

(With this notation the horizontal line separates a 
sequence of propositions from a conclusion.) 

Here we have  

p the proposition:  2 ∣ a  
q the proposition:  2| ab 

I can show that the argument is invalid with an example: 

Let a = 3 and b = 2. Clearly,  2 ∤ a  and 2 ∣ ab 
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In the geometry argument we can’t find a counter 
example. The reasoning is flawed, but we can obtain a 
correct version of the argument by noticing that: 

If two sides of a triangle are equal then  
      the opposite angles are equal 

Is a valid geometric fact. We also have the fact that: 

If two angles of a triangle are equal then  
      the opposite sides are equal 

(NOTE: if 2 | ab then 2 |a is not necessarily true) 

The following is a valid argument.  

If two angles of a triangle are equal then  
      then opposite sides are equal 
T is a triangle with two sides that are not equal 
               

The opposite angles of T are not equal 

That is: 

[(p → q) ∧ ¬q ]→ ¬p  is a valid argument and can be 
verified to be a tautology using truth tables  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p q (p → q) (p → q) ∧ ¬q [(p → q) ∧ ¬q ]→ ¬p

T T T F T

T F F F T

F T T F T

F F T T T
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Propositional Functions 

Let P(x) be a propositional function that is either true or 
false for each x in A.  

That is, the domain of P(x) is a set A, and the range is 
{true, false}. NOTE: Sometimes propositional function 
are called predicates. 

Observe that the set A can be partitioned into two subsets:  

•Elements with an image that is true. 
•Elements with an image that is false. 

In particular we may define the truth set of P(x) as: 
TP = { x : x in A, P(x) is true} 

Examples: Consider the following propositional 
functions defined on the positive integers.  

P(x): x + 2 > 7 ; TP = {x : x > 5} 
P(x): x + 5 < 3 ; TP = ∅ 
P(x): x + 5 > 1 ; TP = ℕ  
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Quantifiers 
There are two widely used logical quantifiers 

Definition: 
Universal Quantifier: ∀ (for all) 

Let P(x) be a propositional function. A  quantified 
proposition using the propositional function can be stated 
as: 

 (∀x ∈ A) P(x) (for all x in A P(x) is true) 

Tp = {x :x ∈ A, P(x)} = A 

Or if the elements of A can be enumerated as: 

A = {x1, x2, x3, ...} 

We would have: 

P(x1) ∧ P(x2) ∧ P(x3) ∧ ... is true. 
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Definition: 
Existential Quantifier: ∃(there exists) 

Let P(x) be a propositional function. A  quantified 
proposition using the propositional function can be stated 
as: 

(∃x ∈ A) P(x) ( There exists an x in A s.t. P(x) is true) 

TP = {x :x ∈ A, P(x)} ≠ ∅ 

Or if the elements of A can be enumerated as: 

A = {x1, x2, x3, ...} 

We would have: 

P(x1) ∨ P(x2) ∨ P(x3) ∨ ... is true. 
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Quantifiers 
  
Statement True when: False when:
 (∀x ∈ A) P(x) P(x) is true for 

every x ∈ A.
P(x) is false for 
one or more  
x ∈ A. 

(∃x ∈ A) P(x) P(x) is true for 
one or more  
x ∈ A.

P(x) is false for 
every x ∈ A.
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Propositional functions with more than one variable 

Consider the following illustrative example: 

Let p(x,y) be the proposition that “x+y = 10” where the 
ordered pair (x,y) ∈ {1, 2, ..., 9} × {1, 2, ..., 9}. 

Consider the following quantified statements: 

1.  ∀x ∃y  p(x,y) 
2.   ∃y ∀x p(x,y) 

1. Says: “for every x there exists a y such that x + y = 10” 
2. Says: “there exists a y such that for every x, x+y = 10” 

Statement 1. is true, and statement 2, is false by 
inspection. This simply illustrates that the concepts that 
we have seen can be extended to more that one variable. 
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