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CISC-102 
Winter 2019 

Week 3 

Principle of Mathematical Induction  

A proposition is defined as a statement that is 
either true or false. We will at times make a 
declarative statement as a proposition and then 
proceed to prove that it is true. Alternately we 
may provide an example (called a 
counterexample ) showing that the proposition 
is false. 

Let P be a proposition defined on the positive 
integers ; that is, P(n) is either true or false 
for each � . Suppose P has the following 
two properties:  
(i) P(1) is true. 
(ii) P(k+1) is true whenever P(k) is true.  

N
n 2 N
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Then by the principle of Mathematical 
Induction P is true for every positive integer 

. 

Mathematical induction is by far the most 
useful tool for proving results in 
computing.  

Note: Step (i) may be replaced by any integer 
b and then the principle of mathematical 
induction would hold for all integers greater 
than or equal to b. 

n 2 N
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Example:  

!  

for all natural numbers n . 

Recall from last weeks notes we reviewed 
binary numbers.  

Consider the binary number 1111. 

It is equal to:  

1 × 23 + 1 × 22 + 1 × 21 + 1 × 20  = 15 =  24 - 1. 

2n−1 + 2n−2 + ⋯ + 21 + 20 = 2n − 1

1 1 1 1
1 × 8 1 × 4 1 × 2 1 × 1 
1 × 23 1 × 22 1 × 21 1 × 20
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We can verify that the equation holds for 
small values of n, say n = 1,2, 3. However this 
does not prove that the equation is true for all 
natural numbers n.  

Let P(n) be the proposition that the equation above is 
correct for the natural number n. We will use 
mathematical induction to prove that P(n) is true for 
every n ∈ ℕ.  

The steps to using induction have been 
described as: 

(i)P(1) is true. 
(ii) P(k+1) is true whenever P(k) is true. 

I will label step (i) the Base. Step (ii) will be 
split into two parts labelled the Induction 
Hypothesis, and the Induction Step.  
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!  for all natural 
numbers n .  

Base:  We show that P(1) is true, that is,  

 for n = 1, we have .  

Induction Hypothesis : Assume that P(k) is true, for 
some fixed natural number k, such that  k ≥ 1. That 
is, 
 !  

Induction Step: We prove that P(k+1) is true using 
the assumption that P(k) is true. 

 !  
  
The equality holds because we use the induction 
hypothesis to replace  
 !  
with  
 ! . 

Now we do a bit of arithmetic.  

2n−1 + 2n−2 + ⋯ + 21 + 20 = 2n − 1

21−1 = 21 − 1 = 1

2k−1 + 2k−2 + ⋯ + 21 + 20 = 2k − 1

2k + 2k−1 + 2k−2 + ⋯ + 21 + 20 = 2k + 2k − 1

2k−1 + 2k−2 + ⋯ + 21 + 20

2k − 1
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!  

If you follow the chain of equalities we  have: 

!  

and that P(k+1) is true.  

Therefore by the principle of mathematical induction 
we conclude that P(n) is true for all natural numbers 
n.  ◻ 

2k + 2k − 1 = 2(2k) − 1 = 2k+1 − 1

2k + 2k−1 + 2k−2 + ⋯ + 21 + 20 = 2k+1 − 1
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Observe that the sum: 

 !  

can be written as: 

 !  

Following mathematics convention the 
sequence of equalities in the induction step 
can be written as follows: 

 !  

      
               !  (using the Ind. Hyp.) 

      !  

2n−1 + 2n−2 + ⋯ + 21 + 20

n−1

∑
i=0

2i

k

∑
i=0

2i =
k−1

∑
i=0

2i + 2k

= 2k − 1 + 2k

= 2k+1 − 1
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Induction

!  
As an analogy think of an unending sequence 
of dominoes. You can be sure that all will fall 
if: 
1. The first one falls. (P(1)) 
2. And if the kth one falls it will knock over 
the k+1st, that is, P(k) true implies that P(k+1) 
is also true. 
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What is the value of the sum: 

 !  ? 

For n = 1 the sum is  1/2,  
for n = 2 the sum is  3/4,  
for n = 3 the sum is 7/8.  

These observations lead us to the equation: 

 !  

We can now prove this using mathematical 
induction.  

1
2

+
1
4

+ ⋯ +
1
2n

, n ∈ ℕ, n ≥ 1

n

∑
i=1

1
2i

= 1 −
1
2n
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Let P(n) denote the proposition  

 !  

We prove, using mathematical induction, that P(n) is 
true for all natural numbers n.  

Base: For n = 1, we have 1/2 = 1 - 1/2. 

Induction Hypothesis: P(k) is true for a fixed  
k ∈ ℕ, k ≥ 1, that is: ! . 

Induction Step: We show that P(k) true implies that 
P(k+1) is true.  

 !  

      !  (using the Ind. Hyp.) 

      !  

Therefore by the principle of mathematical induction 
we conclude that P(n) is true for all natural numbers 
n.  ◻  

n

∑
i=1

1
2i

= 1 −
1
2n

∑k
i=1

1
2i = 1 − 1

2k

k+1

∑
i=1

1
2i

=
k

∑
i=1

1
2i

+
1

2k+1

= 1 −
1
2k

+
1

2k+1

= 1 −
1

2k+1
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The next example does not involve sums or 
generalized set operations, but we will still be able to 
use induction.  

Consider a !  square grid, as shown below for  
n = 3. 

An L-shaped piece is the union of three squares in 
the shape of an L.  An L-shaped piece can be aligned 
and oriented over the square grid in four ways as 
shown above.  

2n × 2n
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A tiling of the grid with L-shaped pieces is an 
arrangement of the pieces so no two overlap 
(pairwise empty intersection) and the pieces cover 
the entire grid (union of the pieces is the entire grid) 
So a tiling can also be described as a partition of the 
grid into L-shaped pieces.  

We can prove, using mathematical induction, that it 
is impossible to tile a !  square grid with L-
shaped pieces. But we will leave that for later on in 
the course. Today, we will prove that L-shaped 
pieces can tile a !  square grid with one square 
missing, for all natural numbers n.  

Base: P(1) is the proposition the a !  square grid 
with one piece missing can be tiled with L-shaped 
pieces. The illustration below exhaustively 
enumerates the ways in which this can be done.  

2n × 2n

2n × 2n

2 × 2
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Induction Hypothesis: We assume that P(k) is true, 
for some fixed k, k ∈ ℕ, that is a !  square grid 
with one piece missing can be tiled with L-shaped 
pieces.  

Induction Step: We show that P(k) true implies that 
P(k+1) is true.  

Consider a !  square grid with one piece 
removed as shown below for k = 2.  

2k × 2k

2k+1 × 2k+1
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The !  square grid with one piece removed 
can be partitioned into four !  square grids. One 
of the !  square grids has a square removed.  

Place an L-shaped piece at the boundary of the four  
!  square grids, so as to avoid the the !  
square grid with one piece removed. This in effect 
creates a collection of four !  square grids each 
having one square removed. Now apply the 
induction hypothesis to complete the tiling.  

Therefore, we have shown that the proposition P(k) 
true implies that P(k+1) is true. So by the principle 
of mathematical induction we have P(n) is true for 
all natural numbers. ⧠ 

2k+1 × 2k+1

2k × 2k

2k × 2k

2k × 2k 2k × 2k

2k × 2k
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Example: The sum of the first n odd numbers is n2. 

Let’s try it for some small values of n. 
n = 1 (1 = 12), n = 2 (1+ 3 = 4 = 22),  
n = 3 (1 + 3 + 5 = 9 = 32) 
This is NOT A PROOF! These simply show that the 
propositions P(1), P(2) and P(3) are true. 

Preliminaries: The kth odd number can be written as 
2k-1. 
e.g.  1 = 2 ×1-1, 3 =2×2-1, 5=2×3-1 etc . This fact 1 2

will be useful for proving that the sum of the first n 
odd numbers is n2. 

At this point let’s take a closer look at what is meant 
by an odd number and define it precisely. 

exempli gratia are Latin words meaning “for example”1

 et cetera are Latin words meaning “and so on”2
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Let n be a natural number.  

Even Natural numbers
If 2 divides n, that is n/2 is a natural number then we 
say that n is even. For example 2/2 = 1 so 2 is even, 
4/2 = 2 so 4 is even. Every even natural number can 
then be expressed as a multiple of 2. For example 2 
× 1 = 2, and 2 × 2 = 4. So if k is a natural number 2k 
is even.  

Odd Natural numbers
When we study integers and integer arithmetic we 
will be better equipped to formally define what is 
meant be an odd number. For now we can simply 
define an odd natural number as any natural number 
that is 1 less than an even number, that is 2k-1. 



Week 3 �  of �17 24

Theorem: The proposition P(n), the sum of the first 
n odd numbers is n2 for all natural numbers n. 
Proof: 
Base: P(1) 1 = 12, so P(1), the base case is true. 
Induction Hypothesis: Assume P(k) is true where k 
is any arbitrary  integer greater than or equal to 1.  
           That is, 1 + 3 + 5 + ... + 2k-1 = k2. 

Induction Step: Consider the sum of the first k+1 
odd numbers.  

1 + 3 + 5 … + 2k-1 + 2k+1 = k2 + 2k+1  ( Ind. Hyp. ) 
                    = (k+1)(k+1) ( factor  
                                            = (k+1)2 

Therefore, we have shown that the proposition P(k) 
true implies that P(k+1) is true. So by the principle 
of mathematical induction we conclude that P(n) is 
true for all natural numbers n.  ⧠ 
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Some of you may have learned to resolve this type 
of sequence of equations as follows.  

You can use this as a preliminary step but it is an 
abuse of notation. Once you have worked this 
preliminary step you can re-write the sequence by 
going down the right hand side, and then up the left 
hand side (omitting repeats). 

RHS LHS

1 + 3 + … +2K+1 = (k+1)2

k2 + 2k + 1  = (k+1) (k+1)
(k+1)(k+1)  = (k+1)(k+1)
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Theorem: The proposition P(n), the sum of the first 
n even natural numbers is n2 + n  for all natural 
numbers n. 
Proof: 
Base: P(1): 2 = 12 + 1, so P(1), the base case is true. 
Induction Hypothesis: Assume P(k) is true where k 
is any arbitrary  integer greater than or equal to 1.  
That is, 2 + 4 + 6 + ... + 2k = k2 + k. 

Our goal in the Induction step is to show that  

2 + 4 + … + 2k + 2(k + 1) = (k+1)2 + k+1.  

Tip: (k+1)2 + k + 1  = k2 + 2k + 1 + k + 1 
   = k2 + 3k + 2 

Induction Step:  
2 + 4  … + 2k + 2(k + 1)  =  k2 + k + 2k + 2  
    =  k2 + 3k + 2 
 
Therefore, we have shown that the proposition P(k) 
true implies that P(k+1) is true. So by the principle 
of mathematical induction we conclude that P(n) is 
true for all natural numbers n.  ⧠ 
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You may be tempted to think that it is enough to just 
enumerate a few cases to convince yourself that a 
proposition is true. 

Let P(n) be the proposition that 3n < 1000 for all 
natural numbers n.  

3 × 1 < 1000 
3 × 2 < 1000 
 . 
 . 
 . 
3 × 333 < 1000 

So P(n) must be true. (Obviously NOT!) 
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Here’s another example where the first few cases 
lead to a false conclusion.  

Let P(n) be the proposition that n! < 2n is true for all 
n ∈ ℕ. 

Observe that:  

1! = 1 <2 
2! = 2 < 4 
3! = 6 < 8 

However, if we check one additional case, 

4! = 24 > 16.  

In fact we can use induction to prove that  

n! ≥ 2n, is true for all n ∈ ℕ, n ≥ 4.  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Students sometimes find proving results using 
inequalities ( that is relations like ≤,  <,  ≥ , >) hard 
to grasp. Don’t worry if you don’t get this the first 
time you read it. If you persist you should eventually 
understand this. 
Theorem: n! ≥ 2n, for n ∈ ℕ, n ≥ 4. 
Proof: Let P(n) be the proposition n! ≥ 2n, for n ≥ 4. 
Base:  P(4) is true because 4×3×2×1 ≥ 24 

Induction Hypothesis: P(k) is true for k ≥ 4.  
Induction Step: (k + 1) ! = k! (k+1) 

                                          ≥ 2k (k+1) (because        
        P(k) is true) 

                                          ≥ 2k (2)(because k ≥ 4) 

                                          ≥ 2k+1 

Therefore, we have shown that the proposition P(k) 
true implies that P(k+1) is true. So by the principle 
of mathematical induction we have P(n) is true for 
all natural numbers n ≥ 4.  ⧠ 
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Yet Another Example 
Observe that if we have sets  such that  

  

then ! .  

This should be apparent because !  implies 
that every element of !  is also an element of  

  

We will make use of this fact to prove: 

P(n) the proposition that if !  are 
sets such that !  for all i, 1 ≤ i ≤ n,  
then !  for all natural numbers n, n ≥ 2.  
  

A1, A2, B1, B2

A1 ⊆ B1, A2 ⊆ B2

(A1 ∪ A2) ⊆ (B1 ∪ B2)

A1 ⊆ B1, A2 ⊆ B2
(A1 ∪ A2)

B1 or B2

A1, A2, …An, B1, B2, …, Bn
Ai ⊆ Bi

∪n
i=1 Ai ⊆ ∪n

i=1 Bi
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P(n) the proposition that if !  are 
sets such that !  for all i, 1 ≤ i ≤ n,  
then !  for all natural numbers n, n ≥ 2. 

Base: We have previously argued that  such 
that !  then ! . 
Induction Hypothesis: We assume that P(k) is true, that 
is for some fixed k ∈ ℕ, such that !  for all i, 1 ≤ i 
≤ k, then ! . 
Induction Step: We show that P(k) true implies P(k+1) true. 

Observe that  !  

By the induction hypothesis we have !  . 
Furthermore ! . Therefore we conclude that  

   ! .  

Therefore, we have shown that the proposition P(k) true 
implies that P(k+1) is true. So by the principle of 
mathematical induction we have P(n) is true for all natural 
numbers n ≥ 2. ⧠ 

A1, A2, …An, B1, B2, …, Bn
Ai ⊆ Bi

∪n
i=1 Ai ⊆ ∪n

i=1 Bi

A1, A2, B1, B2
A1 ⊆ B1, A2 ⊆ B2 (A1 ∪ A2) ⊆ (B1 ∪ B2)

Ai ⊆ Bi
∪k

i=1 Ai ⊆ ∪k
i=1 Bi

k+1

⋃
i=1

Ai =
k

⋃
i=1

Ai ∪ Ak+1

∪k
i=1 Ai ⊆ ∪k

i=1 Bi
Ak+1 ⊆ Bk+1

∪k+1
i=1 Ai ⊆ ∪k+1

i=1 Bi


