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CISC-102 
Fall 2019 
Week 8 

Congruence Relations 

Let a and b be integers. We say that a is congruent to b 
modulo m written as: 

a ≣ b (mod m)  

and defined as follows: 

a ≣ b (mod m) if and only if  m | (a-b).  

Consider two integers a and b whose difference is a 
multiple of m. 

1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23

Observe that a and b have the same remainder when divided by m.  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Suppose m | (a-b) therefore a-b = pm for some integer p.  

And:  

( 1 ) a = b + pm 

We can also express b as an integer (call it q) multiple of 
m plus a remainder: 

( 2 ) b =  qm + r 

Putting (1) and (2) together we get  

a = b + pm = qm + r + pm = m(p+q) + r 

So we conclude that if m | (a-b) then a and b have the 
same remainder when divided by m.  

Now suppose a and b are integers that have the same 
remainder when divided by m.  

We have: 

 a = xm + r and b = ym + r,  
 
where x and y are integers and r is the common 
remainder.  

Therefore  a - b = m(x-y), so m | (a-b).  
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Congruences we use everyday: 

 1:00 PM = 13:00 o’clock, that is, 1 ≣ 13 (mod 12)  

The numbers 24 and 42 are even, that is 24 ≣ 42 (mod 2) 

Notes on a piano keyboard. (mod 12) 

The name of the month 14 months ago is the same as the 
name of the month 2 months ago. (mod 12) 

The name of the day 10 days ago is the same as the name 
of the day 3 days ago. (mod 7) 
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Congruence modulo m is an equivalence relation. 
Observe that we can partition the integers by their 
congruences.  

Examples: 

Congruence (mod 2) partitions integers into those that are 
even and odd. 

Congruence (mod 3) partitions integers into three classes 
those that are divisible by 3 (remainder 0) and those with 
remainder 1, and remainder 2 when divided by 3. 

In general we say that congruence modulo m partitions 
the integers into m classes called residue classes modulo 
m. Furthermore, each of these residue classes can be 
denoted by an integer x within the class using the notation 
[x]m. Using set notation we can express this as follows: 

[x]m = {a ∈ ℤ : a ≣ x mod m} 

And each of the residue classes can be denoted by its 
smallest member as follows: 

[0]m, [1]m, [2]m, …, [m-1]m  
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Recall an equivalence relation is reflexive, symmetric, 
and transitive. 

We can verify that congruence is an equivalence relation.  

Reflexive   a ≣ a (mod m) for all integers a,  
   because m | (a-a) .  

Symmetric  if a ≣ b (mod m) then b ≣ a (mod m),    
  because if m | (a-b) then m | -1(a-b)     
 or m | (b-a).  

Transitive  if a ≣ b (mod m) and b ≣ c (mod m)  
   then a ≣ c (mod m).  
   because if m | (a-b) and m | (b-c)  
   then m | ((a-b) + (b-c) ) or m  | (a - c) 
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Arithmetic with congruences 

Suppose we have a ≣ b (mod m) and c ≣ d (mod m). 

Then  

a + c ≣ (b + d) (mod m), 

a - c ≣ (b - d) (mod m), and 

ac ≣ (bd) (mod m). 

Examples 

5 ≣ 2 (mod 3) and 10 ≣ 1 (mod 3) 

5 + 10 ≣ (2 + 1) (mod 3), that is,  15  ≣ 3 (mod 3)  

5 - 10 ≣ (2 - 1) (mod 3), that is, -5  ≣ 1 (mod 3)  

(Note: By the Division Algorithm Theorem we have -5 = (-2)(3) + 1 )  

(5)(10) ≣ (2)(1) (mod 3), that is, 50 ≣ 2 (mod 3)  

6



 page  of 7 22

Suppose we have a ≣ b (mod m) and c ≣ d (mod m). 
Then  a + c ≣ (b + d) (mod m). 

Proof: (We need to show that a + c ≣ (b + d) (mod m).) 

If a ≣ b (mod m) then m | (a-b). 
And  if c ≣ d (mod m) we have m | (c-d).  

This in turn implies that  
m | ((a - b) + (c - d))  

which can be written as  
m | ((a + c ) - (b + d)).  

So we can conclude that a + c ≣ (b + d) (mod m). ◻ 
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Suppose we have a ≣ b (mod m) and c ≣ d (mod m). 
Then  ac ≣ (bd) (mod m).  ◻ 

Proof: (We need to show that m | (ac - bd).) 

If a ≣ b (mod m) then m | (a-b). 
And  if c ≣ d (mod m) we have m | (c-d).  

This in turn implies that  
m | (a - b)c  (because m | (a - b)p for all integers p) 

and that  
m | (c - d)b (because m | (a - b)p for all integers p).  

Therefore we have  
m | ((a - b)c + (c - d)b) 

Which can be written as:  
m | (ac - bd) 

So we can conclude that ac ≣ (bd) (mod m). ◻  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Techniques of Counting (Chapter 5 of SN) 

We have already seen and solved several counting 
problems.  
For example: 

• How many subsets are there of a set with n elements? 
• How many two element subsets are there of a set with n 
elements.  

Counting problems are useful to determine resources used 
by an algorithm (e.g. time and space). 
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Product Rule Principle 
Let A × B denote the cross product of sets A and B. 
Then |A × B| = |A| × |B|  1

For example suppose you have to pick a main course 
from: Fish, Beef, Chicken, Vegan. We can write this as the 
set M (Main), as follows 

M  = {F,B,C,V} 
 
Furthermore there is also choice of  a desert from: Apple 
pie, Lemon meringue pie, Ice cream. This can be 
represented as the set D. 

 D = {A,L,I} 

When we select a meal we select a main course AND a 
desert. 
We use the product rule to determine the total number of 
possible meals, that is:  

|{F,B,C,V}| × |{A,L,I}| = (4)(3) = 12. 

 Recall: vertical bars represent cardinality, or the number of elements in the set.1
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The product rule principle can be stated formally as: 

Suppose there is an event E that occurs in m ways and an 
event F that occurs in n ways, and these two events are 
independent of each other. Then the combination the 
events E AND F can occur in m × n ways. 
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Product Rule Principle 
The rule generalizes to any number of independent sets 
(events). For example with 3 sets: 
Let A × B × C denote the cross product of sets A, B, & C. 

Then |A × B × C | = |A| × |B| ×|C| . 

For k sets we have: 

 |A1 ⇥A2 ⇥ . . .⇥Ak| = |A1| · |A2| · . . . · |Ak|
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For example, DNA is represented using the 4 symbols:  

A C G T. 

The number of different strings of length 7 using these 
symbols is: 

 4 × 4 × 4 × 4 × 4 × 4 × 4 = 47. 

The number of strings of length k using these 4 symbols 
is: 

4k 
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Sum Rule Principle 

Suppose we have the same mains and deserts as before, 
and we can also choose a soup or a salad. 

Where the soups are: 

  S = {Ministrone, Lobster Bisque, Tomato} 

And the salads are  

  T = { Garden, Caesar }  

In how many ways can we choose a soup OR a salad? 

We have | S | = 3 and | T | = 2 for a total of 3 + 2 = 5 
choices.  

Note that these sets have an empty intersection. For non-
empty intersections we would need to use the principle of 
inclusion and exclusion.  
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The sum rule can be stated formally as: 

Suppose some event E can occur m ways, and a second 
event F can occur in n ways, and the two events do not 
occur at once, then E OR F can occur in m + n ways.  

And sometime we combine the two principles. As in 
counting the number of meals we can make when 
choosing  

3 Soups OR 2 Salads 

AND  

4 Mains 

AND 

3 Deserts  

is: (3 + 2) (4) ( 3) = 60 different meals.  
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The Pigeon Hole Principle 

If there are n+1 pigeons, that all must sleep in a pigeon 
hole, and n pigeon holes, then there is at least one pigeon 
hole where (at least) 2 pigeons sleep. 
This should be obvious! Mathematicians give it a name 
because it is a useful counting tool. 
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Do two people exist who live in the G.T.A. and have 
exactly the same number of strands of hair on their heads? 

The answer is YES! And we can prove it using the pigeon 
hole principle.  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The population of the G.T.A is more than 6 million. 
Science tells us that nobody has more that 500,000 strands 
of hair on their heads.  

To solve the problem using the pigeon hole principle we 
imagine 500,000 pigeon holes labelled from 1, ..., 
500,000 and then imagine each resident of the G.T.A. 
entering the pigeon hole labelled with the number of 
strands of hair on their head. Since 6 million is greater 
than 500,001 we deduce that there will be at least one 
pigeon hole where two or more people have entered. 
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 The generalized pigeonhole principle 
Let k be a positive integer.  
If there are kn+1 pigeons, that all must sleep in a pigeon 
hole, and n pigeon holes, then there is at least one pigeon 
hole where (at least) k+1 pigeons sleep. 

Observe that 6,000,000 = 12 * 500,00, so we can 
conclude that there exists at least 12 + 1 = 13 people that 
live in the G.T.A. with the same number of strands of hair 
on their heads.  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Can we find 2 pairs of people living in the G.T.A. that 
have exactly the same number of strands of hair on their 
heads? 

The pigeon hole principle is useless for solving this 
problem and we leave this as an unsolved mystery. 

20



 page  of 21 22

Let’s look at two more applications of the pigeon hole 
principle.  

Find the minimum number n of integers to be selected 
from S = {1, 2, …, 9} so that the sum of two of the 
integers is guaranteed to be even. 

If a number x is odd then x = 2p + 1 for some integer p. 
And similarly an odd number y yields,  y = 2q + 1 for 
some integer q. Thus x + y = 2(p+q + 1) and is divisible 
by two. Similarly one can show that the sum of 2 even 
numbers is even. 

This leads to the observation that as long as we have two 
odd or two even integers we get an even sum, so we 
partition S into even and odd numbers. By the pigeon hole 
principle 3 numbers from S will always contain a pair that 
sums to an even number. 

Pigeon holes are: {1,3,5,7,9} and {2,4,6,8}  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Find the minimum number n of integers to be selected 
from S = {1, 2, …, 9} so that the absolute difference 
between two of the integers is exactly 5. 

We partition S into pairs that yield a difference of 5.  

Pigeon holes are: {1,6},{2,7},{3,8},{4,9},{5} 

So we need to pick 6 numbers to guarantee that difference 
of two is 5. 
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