CISC-102 WINTER 2019

HOMEWORK 10

Assignments will **not** be collected for grading.

READINGS

Read chapter 4 of Schaum's Outline of Discrete Mathematics. Read section 3.1, 3.5 and 3.6 of Discrete Mathematics Elementary and Beyond.

PROBLEMS

(1) Prove (using mathematical induction on n) that:

$$\sum_{m=0}^{n-1} {m+1 \choose m} = {n+1 \choose n-1}$$

is true for all $n \in \mathbb{N}$.

- (2) Use a truth table to verify that the proposition $p \vee \neg (p \wedge q)$ is a tautology, that is, the expression is true for all values of p and q.
- (3) Use a truth table to verify that the proposition $(p \land q) \land \neg (p \lor q)$ is a contradiction, that is, the expression is false for all values of p and q.
- (4) Use a truth table to show that $p \lor q \equiv \neg(\neg p \land \neg q)$
- (5) Show that the following argument is valid.

$$p \to q, \neg q \vdash \neg p$$

- (6) Let $A = \{1,2,3,4,5\}$. Determine the truth value of each of the following statements.
 - (a) $(\exists x \in A)(x+2=7)$
 - (b) $(\forall x \in A)(x + 2 < 8)$
 - (c) $(\exists x \in A)(x+3 < 2)$
 - (d) $(\forall x \in A)(x+3 \le 9)$
- (7) Let $A = \{1, 2, 3, 4, 5\}$. And let $(x, y) \in A^2$, be the domain of the propositions given below. Determine the truth value of the following statements.
 - (a) $\exists x \forall y, x^2 < y + 1$
 - (b) $\forall x \exists y, x^2 < y + 1$