# **CISC-102 WINTER 2019**

### HOMEWORK 3

#### READINGS

Read sections 1.8 of Schaum's Outline of Discrete Mathematics. Read section 2.1 of Discrete Mathematics Elementary and Beyond.

#### PROBLEMS

(1) Prove using mathematical induction that the sum of the first n natural numbers is equal to  $\frac{n(n+1)}{2}$ . This can also be stated as: Prove that the proposition P(n),

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

is true for all  $n \in \mathbb{N}$ 

(2) Prove using mathematical induction that the proposition P(n),

$$\sum_{i=2}^{n} i = \frac{(n-1)(n+2)}{2}$$

is true for all  $n \in \mathbb{N}, n \geq 2$ .

(3) Prove using mathematical induction that the proposition P(n),

$$\sum_{i=3}^{n} i = \frac{(n-2)(n+3)}{2}$$

is true for all  $n \in \mathbb{N}, n \geq 3$ .

(4) Prove using mathematical induction that the proposition P(n)

$$n! < n^n$$

is true for all  $n \in \mathbb{N}$ .

(5) Let P(n) be the proposition that if  $A_1, A_2, \ldots, A_n, B_1, B_2, \ldots, B_n$  are sets such that  $A_i \subseteq B_i$  for all  $i, 1 \leq i \leq n$ , then  $\bigcap_{i=1}^n A_i \subseteq \bigcap_{i=1}^n B_i$ . Prove, using mathematical induction that P(n) is true for all natural numbers  $n \ge 2$ .

## HOMEWORK 3

(6) Given a set of n points on a two dimensional plane, such that no three points are on the same line, it is always possible to connect every pair of points with a line segment. The figure illustrates this showing 5 points, that are pairwise connected with 10 line segments. Prove using mathematical induction that the total number of line segments is  $\frac{n(n-1)}{2}$  for any number of points  $n \in \mathbb{N}, n \geq 2$ .



FIGURE 1. Five points, pairwise connected with 10 line segments.

 $\mathbf{2}$